

ATLANTIS COMPUTATIONAL INTELLIGENCE SYSTEMS

VOLUME 5

SERIES EDITORS: JIE LU, JAVIER MONTERO

Atlantis Computational Intelligence Systems

Series Editors:

Jie Lu

Faculty of Engineering and Information Technology, University of Technology

Sydney, Australia

Javier Montero

Department of Statistics and Operational Research, Faculty of Mathematics

Complutense University of Madrid, Spain

(ISSN: 1875-7650)

Aims and scope of the series

The series ‘Atlantis Computational Intelligence Systems’ aims at covering state-of-the-

art research and development in all fields where computational intelligence is investigated

and applied. The series seeks to publish monographs and edited volumes on foundations

and new developments in the field of computational intelligence, including fundamental

and applied research as well as work describing new, emerging technologies originating

from computational intelligence research. Applied CI research may range from CI applica-

tions in the industry to research projects in the life sciences, including research in biology,

physics, chemistry and the neurosciences.

All books in this series are co-published with Springer.

For more information on this series and our other book series, please visit our website at:

www.atlantis-press.com/publications/books

AMSTERDAM – PARIS – BEIJING

c© ATLANTIS PRESS

Answer Set Programming For
Continuous Domains:

A Fuzzy Logic Approach

Jeroen Janssen
Vrije Universiteit Brussel, Department of Computer Science, Pleinlaan 2,

1050 Brussels, Belgium

Steven Schockaert
School of Computer Science & Informatics, Queen’s Buildings, 5 The

Parade, Roath, Cardiff CF24 3AA, United Kingdom

Dirk Vermeir
Vrije Universiteit Brussel, Department of Computer Science, Pleinlaan 2,

1050 Brussels, Belgium

Martine De Cock
Ghent University, Dept. of Applied Mathematics and Computer Science

(WE02), Krijgslaan 281 (S9), 9000 Gent, Belgium

AMSTERDAM – PARIS – BEIJING

Atlantis Press
8, square des Bouleaux

75019 Paris, France

For information on all Atlantis Press publications, visit our website at: www.atlantis-press.com

Copyright
This book is published under the Creative Commons Attribution-Non-commercial license, meaning

that copying, distribution, transmitting and adapting the book is permitted, provided that this is done

for non-commercial purposes and that the book is attributed.

This book, or any parts thereof, may not be reproduced for commercial purposes in any form or by

any means, electronic or mechanical, including photocopying, recording or any information storage

and retrieval system known or to be invented, without prior permission from the Publisher.

Atlantis Computational Intelligence Systems
Volume 1: Linguistic Values Based Intelligent Information Processing: Theory, Methods, and

Applications - Da Ruan

Volume 2: Computational Intelligence in Complex Decision Systems - Da Ruan (Editor)

Volume 3: Intelligence for Nonlinear Dynamics and Synchronisation - K. Kyamakya, A.

Bouchachia, J.C. Chedjou

Volume 4: Trust Networks for Recommender Systems - P. Victor, C. Cornelis, M. De Cock

ISBNs

Print: 978-94-91216-58-9

E-Book: 978-94-91216-59-6

ISSN: 1875-7650

c© 2012 ATLANTIS PRESS

Preface

Answer set programming (ASP) is a form of logic programming that originated at the end

of the 1980s and the beginning of the 1990s. It is especially tailored towards solving hard

search problems, which it allows to encode concisely. In the past two decades it has known

great success and has – among others – been applied to planning problems, musical com-

position, biological modeling and decision support systems for the space shuttle. Unfortu-

nately, ASP is not very well equipped for modeling problems in continuous domains. In this

book we attempt to augment ASP with the capability of expressing continuous problems

by creating an answer set programming framework based on fuzzy logic. The resulting

language is called fuzzy answer set programming (FASP). After two introductory chapters,

also introducing the necessary technical background, we study FASP and its extensions in

Chapters 3 and 4. Then we focus on the question of whether the many extensions of FASP

can be compiled to a core language in Chapter 5 and succeedingly study an implementation

method for a subset of FASP in Chapter 6. As such, we focus both on theoretical aspects

of the language as on more practical aspects such as implementation.

This book originated from the doctoral thesis of the first author, which was successfully

defended in June 2011. Encouraged by the enthusiastic reports of the committee members,

we have decided to publish this book, and make the obtained results available to a larger

audience. We are grateful to the external members of the doctoral jury, Umberto Straccia

and Wolfgang Faber, for their useful suggestions and remarks on the first version of this

thesis. Our special thanks go to Da Ruan, the former editor of the Atlantis Computational

Intelligence Systems book series, who initiated the publication process of this book shortly

before he passed away very unexpectedly in the Summer of 2011. For us, this book will

always be associated with dear memories of Da’s friendship and his enthusiasm and help

to publish our work. We would also like to thank the new series editors Jie Lu and Javier

Montero for their valued contributions in continuing Da Ruan’s work, and for guiding

v

vi Answer Set Programming for Continuous Domains:a Fuzzy Logic Approach

us through the final publication stages of this book. Finally, we would like to thank the

Research Foundation - Flanders (FWO) for the financial support.

Contents

Preface v

1. Introduction 1

1.1 Answer Set Programming . 4

1.2 Fuzzy Logic . 7

1.3 Overview . 10

2. Preliminaries 11

2.1 Order Theory . 11

2.2 Answer Set Programming . 13

2.2.1 Definitions . 13

2.2.2 Classical negation vs negation-as-failure 21

2.2.3 Links to SAT . 22

2.3 Fuzzy Logic . 25

2.3.1 Fuzzy Sets . 26

2.3.2 Logical Operators on Bounded Lattices 26

2.3.3 Formal Fuzzy Logics . 32

3. Fuzzy Answer Set Programming 35

3.1 Introduction . 35

3.2 Definitions . 36

3.2.1 Language . 36

3.2.2 Semantics . 38

3.3 Example: Fuzzy Graph Coloring . 46

vii

viii Answer Set Programming for Continuous Domains:a Fuzzy Logic Approach

4. Aggregated Fuzzy Answer Set Programming 49

4.1 Introduction . 49

4.2 Aggregated Fuzzy Answer Set Programming 50

4.2.1 Models . 51

4.2.2 Answer Sets . 58

4.3 Illustrative Example . 74

4.4 Relationship to Existing Approaches . 79

4.4.1 Fuzzy and Many-Valued Logic Programming Without Partial

Rule Satisfaction . 81

4.4.2 Weighted Rule Satisfaction Approaches 82

4.4.3 Van Nieuwenborgh et al. 86

4.4.4 Valued Constraint Satisfaction Problems 90

4.4.5 Answer Set Optimization . 90

4.5 Summary . 91

5. Core Fuzzy Answer Set Programming 97

5.1 Introduction . 97

5.2 The FASP Core Language . 99

5.3 Constraints . 100

5.3.1 Implementing Constraints . 100

5.3.2 Locking the Truth Value . 105

5.4 Monotonically Decreasing Functions . 107

5.5 Aggregators . 110

5.6 S-implicators . 117

5.7 Strong Negation . 121

5.8 Summary . 123

5.A Proofs . 125

5.B Diagram . 131

6. Reducing FASP to Fuzzy SAT 133

6.1 Introduction . 133

6.2 Completion of FASP Programs . 134

6.3 Loop Formulas . 139

6.4 Example: the ATM location selection problem 146

Contents ix

6.5 Discussion . 153

6.6 Summary . 155

7. Conclusions 157

Bibliography 161

Index 171

Chapter 1

Introduction

Language is one of the most important tools that exist. It allows humans to communi-

cate efficiently and to transfer knowledge between generations. According to Benjamin

Whorf, language even shapes views and influences thoughts1. Unfortunately, while human

language is useful for communication between humans, it is not as efficient for communi-

cating with our modern day devices. Therefore, ever since the rise of computers, the need

has grown for languages that enable us to tell these machines what we expect them to do.

Such languages are called programming languages. Their foundations can be dated back

to the 1800s, where Joseph Marie Jacquard used punched cards to encode cloth patterns for

his textile machine, called the “Jacquard loom”2. Charles Babbage improved on this idea

when designing his “analytical engine” by allowing the machine to be reprogrammed using

punched cards3. Hence, instead of merely using the punched cards as data, the analytical

engine could perform arbitrary computations that were encoded in the punched cards. As

such, we can consider this the first real programmable machine.

The 1940s witnessed the birth of the first machines that resemble our modern day electrical

computers. Initially these machines were programmed using patched cables that encoded

specific machine-instructions. Input and output was done using punched cards. Since the

(re)programming of these computers was a laborious task requiring many people, the idea

arose to unify programs with data and store them in memory. This led to the creation of

stored-program computers, such as EDVAC (Electronic Discrete Variable Automatic Com-

puter, successor of ENIAC4) and SSEM (Small-Scale Experimental Machine5). Contrary

to the earlier designs, these systems could read programs from punched cards and store

1Source: http://en.wikipedia.org/wiki/Benjamin_Lee_Whorf. Retrieved on March 29, 2011
2Source: http://en.wikipedia.org/wiki/Jacquard_loom. Retrieved on Feb 25, 2011.
3Source: http://en.wikipedia.org/wiki/Analytical_Engine. Retrieved on Feb 25, 2011.
4Source: http://en.wikipedia.org/wiki/Edvac. Retrieved on Feb 25, 2011.
5Source: http://en.wikipedia.org/wiki/Ssem. Retrieved on Feb 25, 2011.

1

2 Answer Set Programming for Continuous Domains:a Fuzzy Logic Approach

them in memory, thereby making (re)programming them as easy as inserting a new stack

of punched cards.

While the creation of stored-program computers eliminated the physical burden of pro-

gramming, the mental activity required was still high due to the use of machine-specific

codes. These low-level languages allowed the programmer to greatly optimize their pro-

grams for specific machines, but also made it hard to express complex problems due to

their poor readability and the fact that they are far removed from natural language. To solve

these problems, so called “higher-level” programming languages were developed. One of

the first such languages was “Plankalkül” (“planning calculus”). It was described by Kon-

rad Zuse in 1943 [Zuse (1943, 1948–1949); Bauer and Wössner (1972)], but was only

implemented in 19986 and independently in 2000 [Rojas et al. (2000)]. In the 1950s the

first high-level programming languages with working implementations were created. The

most important among them are Fortran (Formula Translator), COBOL (Common Business

Oriented Language) and LISP (List Processor). Fortran was mostly oriented towards sci-

entific computing, COBOL towards business and finance administration systems and LISP

towards artificial intelligence systems. Though they focused on different domains, each of

them could be used to write general purpose programs. In 1960 computer scientists from

Europe and the United States developed a new language, called ALGOL 60 (algorithmic

language). Though the language, and especially its formulation, contained many innova-

tions, it did not gain widespread use. Its ideas influenced many of the languages created

later, however.

In the 1960s through the 1970s many of the major programming language paradigms that

are still in use today were developed. For example, Simula (end of the 1960s) was the first

language supporting object-oriented programming, Smalltalk (mid 1970s) the first fully

object-oriented programming language, Prolog (1972) the first logic programming lan-

guage and ML (1973) the first statically typed functional programming language7. Most of

our modern languages have clear influences from these languages and can thus be catego-

rized in one of the associated paradigms. Other important programming languages created

in this period were Logo (1968, a LISP offspring developed for teaching), PASCAL (1970,

an ALGOL offspring) and C (1972, a systems programming language).

The 1980s mostly saw the creation of languages that recombined and improved upon the

ideas from the paradigms and languages invented in the 1960s and 1970s. For example,

C++ (1980) combined C with object-oriented programming, Objective-C (1983) combined

6Source: http://en.wikipedia.org/wiki/Plankalkul. Retrieved on Feb 25, 2011.
7Note that LISP was the first dynamically typed functional programming language.

Introduction 3

C with Smalltalk-style messaging and object-oriented programming and Erlang (1986)

combined functional programming with provisions for programming distributed systems.

Next to these languages, a subparadigm of functional programming, called purely func-

tional programming, was also created. Notable examples of the latter are Miranda (1985)

and Haskell (1990).

In the 1990s general interest arose in programming languages that improve programmer

productivity, so called rapid development languages8. Most of these languages incorpo-

rated object-oriented features or were fully object-oriented and had garbage-collection util-

ities to relieve the programmer of manual memory management. Examples are Python

(1991), Visual Basic (1991), Ruby (1993), Java (1995) and Delphi (1995). The rise of the

internet also spurred the development of scripting languages such as JavaScript (1995) and

PHP (1995), which enabled the fast creation of interactive and dynamic websites. Due to

the occurrence of computers with multiple cores, in the 2000s languages tailored for these

machines were created, such as Clojure (2007) and Go (2009).

All programming languages mentioned above are general-purpose programming lan-

guages. This means they can be used to write software for many different application

domains. While such languages have the advantage of only needing to learn one language

for writing a variety of software, most of these languages do not support special constructs

for specific application domains. This makes the translation of the requirements of a new

software package into code much harder. Domain-specific languages are languages that are

tailored towards one specific problem domain. Notable examples are regular expressions

for handling text, SQL for describing database interactions and Yacc for creating compiler

front-ends. Since the 1990s interest in domain-specific languages has increased. In fact,

a new programming methodology, called language-oriented programming, has arisen that

proposes to create a new language describing the domain first, and then use this language

to write the final program [Ward (1994)].

Answer set programming is a declarative domain-specific language tailored towards solv-

ing combinatorial optimization problems. It has roots in logic programming and non-

monotonic reasoning. In this book, we study a new domain-specific language, called fuzzy

answer set programming, that is aimed towards solving continuous optimization problems.

It combines answer set programming with fuzzy logic – a mathematical logic which can

describe continuous concepts in an intuitive manner. In the next two sections we describe

the history and general idea of these two cornerstones in more detail.

8Source: http://en.wikipedia.org/History_of_programming_languages. Retrieved on Mar 1, 2011

4 Answer Set Programming for Continuous Domains:a Fuzzy Logic Approach

1.1 Answer Set Programming

To create systems that are capable of human-like reasoning, we need languages that are

tailored towards representing knowledge and a method for reasoning over this knowledge.

An idea that immediately comes to mind is to use logic to describe our knowledge and use

model-finding algorithms (e.g. SAT solving) for the reasoning part. One of the limitations

of classical logic when mimicking human reasoning is that it works monotonically: when

new knowledge is added, the set of conclusions that can be inferred using classical logic

grows. In contrast humans constantly revise their knowledge when new information be-

comes available. For example if we know that Pingu is a bird, we assume that he can fly.

If we afterwards are told that he is a penguin, however, we need to revise our belief, as we

know that penguins can’t fly.

During the last decades, researchers have studied non-monotonic logics as a way to over-

come this limitation of classical logic. Several such logics have been proposed, such as

circumscription [McCarthy (1980)], default logic [Reiter (1980); Lukaszewicz (1984);

Brewka (1991); Przymusińska and Przymusiński (1994)], auto-epistemic logic [Moore

(1985)], non-monotonic modal logics in general [McDermott (1982)] and logic program-

ming with negation-as-failure [Clark (1977); Van Gelder et al. (1991); Gelfond and Lifs-

chitz (1988)]. In this book, we will focus on the latter.

Non-monotonicity in logic programming is obtained using a special construct called

negation-as-failure, which is denoted as “nota” and intuitively means that the negation

of a is true when we fail to derive a. Defining the semantics of this construct proved to

be a challenge, however. The most important proposed definitions are the Clark comple-

tion [Clark (1977)], the stable model semantics [Gelfond and Lifschitz (1988)] and the

well-founded semantics [Van Gelder et al. (1991)]. The stable model semantics refine the

conclusions of the Clark completion in the presence of positive mutual dependencies be-

tween predicates [Fages (1994)]. The well-founded semantics on the other hand are more

cautious in their conclusions than both the stable models and the Clark completion when

there are mutual dependencies between predicates with the negation-as-failure construct. It

has been shown that the well-founded semantics are an approximation of the stable model

semantics [Baral and Subrahmanian (1993)]. A lot of research has also been devoted to the

relationships between stable model semantics and other non-monotonic logic formalisms.

For a good overview of these links we refer the reader to [Baral (2003)]. Attention has also

been given to studying extensions of these semantics. In [Lifschitz and Woo (1991)] the

stable model semantics is extended to programs with disjunctions, which has been shown

Introduction 5

to make the language capable of modeling a larger class of problems [Eiter et al. (1994)].

Another important extension is the addition of a second form of negation, called classi-

cal negation [Gelfond and Lifschitz (1991)]. Whereas negation-as-failure denotes that the

negation follows from a failure to derive a proof term, classical negation denotes that the

negation of the proof term can explicitly be derived.

At the end of the 1990s researchers began to notice that the stable model semantics gives

rise to a certain logic programming paradigm that is different from the proof-derivation

based approach of languages such as Prolog [Marek and Truszczyński (1999); Niemelä

(1999)]. Vladimir Lifschitz named this new paradigm “answer set programming” (ASP) in

[Lifschitz (2002, 1999)]. The basic idea of answer set programming is that a programmer

translates a certain problem into an answer set program (a logic program under the stable

model semantics) such that the answer sets (stable models) of the program correspond to

the problem solutions. This program is then given as input to an answer set solver which

computes the answer sets of the program. This solver has three possible outputs:

(1) No answer set exists. In this case, the modeled problem does not have a solution.

(2) One answer set exists. In this case, the answer set corresponds to the solution of the

modeled problem.

(3) Multiple answer sets exist. In this case, the modeled problem has multiple solutions.

The user can ask the answer set solver to compute all answer sets, or only a single one

if this suffices.

For example, consider the problem of finding a large clique, i.e. a subset V of an undirected

graph such that: (i) there is an edge between every pair of vertices in V ; (ii) the cardinality

of V is greater than or equal to a given l. If we take l = 3, for example, we can solve this

using the following answer set program Pclique (from [Lifschitz (2002)])9:

in(X)← notout(X) (1.1)

out(X)← not in(X) (1.2)

sizeOk← in(X), in(Y), in(Z),X �= Y,X �= Z,Y �= Z (1.3)

joined(X ,Y)← edge(X ,Y) (1.4)

joined(X ,Y)← edge(Y,X) (1.5)

9Note that existing answer set solvers support an extension that allows to write the combination of rules (1.1)–

(1.3) and (1.7) as the single rule “3{in(X)}”. Since we do not consider these extensions in this book, we opted to

remove this syntactic sugar.

