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Preface

This book is intended to be a self-contained introduction to analytic foundations
of a level set method for various surface evolution equations including curvature
flow equations. These equations are important in various fields including material
sciences, image processing and differential geometry. The goal of this book is to
introduce a generalized notion of solutions allowing singularities and solve the
initial-value problem globally-in-time in a generalized sense. Various equivalent
definitions of solutions are studied. Several new results on equivalence are also
presented.

We present here a rather complete introduction to the theory of viscosity solu-
tions which is a key tool for the level set method. Also a self-contained explanation
is given for general surface evolution equations of the second order. Although most
of the results in this book are more or less known, they are scattered in several ref-
erences, sometimes without proof. This book presents these results in a synthetic
way with full proofs. However, the references are not exhaustive at all.

The book is suitable for applied researchers who would like to know the
detail of the theory as well as its flavour. No familiarity with differential geometry
and the theory of viscosity solutions is required. The prerequisites are calculus,
linear algebra and some familiarity with semicontinuous functions. This book is
also suitable for upper level under graduate students who are interested in the
field.

I am grateful to Professor Herbert Amann for inviting me to write this book
which is based on my Lipschitz lectures in Bonn 1997. I am also grateful to its
audience for their interest. The first version of the book was included in Series
of Lipschitz Lecture Notes as volume 44 (2002). It was also included in Hokkaido
University Technical Report Series in Mathematics as volume 71 (2002). How-
ever, since then the author has been fully occupied with the Center of Excellence
Programme ‘Mathematics of Nonlinear Structures via Singulatiries’ (Hokkaido
University) and with editing the 4-th version of the Encyclopedic Dictionary of
Mathematics. Moreover, the author moved to Tokyo from Sapporo in the middle
of 2004. So it has taken a rather long time to complete the present version of this
book. After the first version appeared, the field continued to grow and many new
articles have been published. They could not all be included without significant
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expansion of the text. Although some effort was made to cite them, the reference
list is not intended to be exhaustive.

I am grateful to Dr. Mi-Ho Giga, Professor Katsuyuki Ishii, Professor Masaki
Ohnuma, Dr. Takeshi Ohtsuka, Professor Reiner Schätzle and Professor Kazuyuki
Yamauchi for their critical remarks on an earlier version of this book. I am also
grateful to Professor Naoyuki Ishimura who read the first version line by line and
provided numerous useful suggestions. Without his careful reading it would have
been almost impossible to prepare a final version. I am also grateful to anonymous
referees for their constructive remarks on the first version. The major part of the
book was written when the author was a faculty member of the Hokkaido Univer-
sity. I am grateful to my colleague in Hokkaido University for encouragement. The
finacial support of the Japan Society for the Promotion of Science (no. 10304010,
11894003, 12874024, 13894003, 14204011, 15634008, 17654037), the formation of
COE ‘Mathematics of Nonlinear Structures via Singularities’ (Hokkaido Univer-
sity) is gratefully acknowledged. Finally I am grateful to Ms. Hisako Morita (neé
Iwai) and Ms. Mika Marubishi for careful typing of respectively, the first and the
final version of the manuscripts in latex style.

Y. Giga

Tokyo
October 2005



Introduction

In various fields of science there often arise phenomena in which phases (of mate-
rials) can coexist without mixing. A surface bounding the two phases is called a
phase boundary, an interface or front depending upon the situation. In the process
of phase transition a phase boundary moves by thermodynamical driving forces.
Since evolution of a phase boundary is unknown and it should be determined as
a part of the solution, the problem including such a phase boundary is called
in general a free boundary problem. The motion of a phase boundary between
ice and water is a typical example, and it has been well studied — the Stefan
problem. For classical Stefan problems the reader is referred to the books of L.
I. Rubinstein (1971) and of A. M. Meirmanov (1992). The reader is referred to
the book of A. Visintin (1996) for free boundary problems related to phase tran-
sition. In the Stefan problem, evolution of a phase boundary is affected by the
physical situation of the exterior of the surface. However, there is a special but
important class of problems where evolution of a phase boundary does not depend
on the physical situation outside the phase boundary, but only on its geometry.
The equation that describes such motion of the phase boundary is called a surface
evolution equation or geometric evolution equations. There are several examples
in material sciences and the equation is also called an interface controlled model.
Examples are not limited to material sciences. Some of them come from geometry,
crystal growth problems and image processing. An important subclass of surface
evolution equations consists of equations that arise when the normal velocity of
the surface depends locally on its normal and the second fundamental form as
well as on position and time. In this book we describe an analytic foundation of
the level set method which is useful to analyse such surface evolution equations
including the mean curvature flow equation as a typical example. We intend to
give a systematic and synthetic approach since the results are scattered in the
literature although there are several review articles, in particular a lecture note
by L. Ambrosio and N. Dancer (2000). This book also includes several new results
on barrier solutions (Chapter 5).

We consider a family {Γt}t≥0 of hypersurfaces embedded in N -dimensional
Euclidean space RN parametrized by time t. We assume that Γt is a compact
hypersurface so that Γt is given as a boundary of a bounded open set Dt in RN



2 Introduction

by Jordan–Brouwer’s decomposition theorem. Physically, we regard Γt as a phase
boundary bounding Dt and RN\Dt each of which is occupied by different phases.
To write down a surface evolution equation we assume that Γt is smooth and
changes its shape smoothly in time. Let n be a unit normal vector field of Γt

outward from Dt. Let V = V (x, t) be the normal velocity in the direction of n at
a point of Γt. If V depends locally on normal n and the second fundamental form
−∇n of Γt, as well as on position x and time t, a general form of surface evolution
equation is

V = f(x, t,n,∇n) on Γt, (0.0.1)

where f is a given function. We list several examples of (0.0.1).

(1) Mean curvature flow equation: V = H , where H is the sum of all principal
curvatures in the direction of n and is called the mean curvature throughout in this
book (although many authors since Gauss call the average of principal curvatures
the mean curvature). The mean curvature is expressed as H = −div n, where div
is the surface divergence on Γt. This equation was first proposed by W. W. Mullins
(1956) to describe motion of grain boundaries in annealing metals.

(2) Gaussian curvature flow equation: V = K, where K is the Gaussian curvature
of Γt, that is, the product of all principal curvatures in the direction of n. For this
problem we take n inward so that a sphere shrinks to a point in a finite time if it
evolves by V = K. This equation was proposed by W. J. Firey (1974) to describe
shapes of rocks on the seashore.

(3) General evolutions of isothermal interface:

β(n)V = −a div ξ(n) − c(x, t), (0.0.2)

where β is a given positive function on a unit sphere SN−1 and a is nonnegative
constant and c is a given function. The quantity ξ is the Cahn–Hoffman vector
defined by the gradient of a given nonnegative positively homogeneous function γ
of degree 1, i.e., ξ = ∇γ in RN . In problems of crystal growth we should often
consider the anisotropic property of the surface structure of phase boundaries; in
one direction the surface is easy to grow, but in the other direction it is difficult to
grow. This kind of thing often happens. The equation (0.0.2) includes this effect
and was derived by M. E. Gurtin (1988a), (1988b) and by S. B. Angenent and M.
E. Gurtin (1989) from the fundamental laws of thermodynamics and the balance
of forces. Note that if γ(p) = |p| and β(p) ≡ 1 with c ≡ 0, a ≡ 1, then (0.0.2)
becomes V = H . If a = 0, the equation (0.0.2) becomes simpler:

V = −c/β(n) on Γt. (0.0.3)

This equation is a kind of Hamilton–Jacobi equation. If β ≡ 1 and c < 0 is a
constant, this equation describes the wave front propagation based on Huygens’
principle.
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(4) Affine curvature flow equations: V = K1/(N+1) or V = (tK)1/(N+1) which
were axiomatically derived by L. Alvarez, F. Guichard, P.-L. Lions and J.-M.
Morel (1993) for applications in image processing. The feature of these equations
is that they are invariant by affine transform of coordinates. For this problem we
take n inward as for the Gaussian curvature flow equation.

Examples of surface evolution equations are provided by the singular limit of
reaction-diffusion equations as many authors have studied. See for example papers
of X.-Y. Chen (1991) and X. Chen (1992).

As we summarized above, surface evolution equations are by now very popu-
lar among various branches of sciences especially in image processing. The reader
is referred to for example, books of G. Sapiro (2001), F. Guichard and J.-M. Morel
(2001), F. Cao (2003) and R. Kimmel (2004) for applications of equations in image
processing.

A fundamental question of analysis is to construct a unique family {Γt}t≥0

satisfying (0.0.1) for given initial hypersurface Γ0 in RN . In other words it is the
question whether there exists a unique solution {Γt}t≥0 of the initial value problem
for (0.0.1) with Γt|t=0 = Γ0. This problem is classified as unique existence of a
local solution or of a global solution depending on whether one can construct
a solution of (0.0.1) in a short time interval or for infinite time. If the equation
(0.0.1) is strictly parabolic in a neighborhood of initial hypersurface Γ0, then there
exists a unique local smooth solution {Γt} for given initial data provided that the
dependence of variables in f is smooth. It applies to the mean curvature flow
equation and its generalization (0.0.2) with a > 0 and smooth β and c for general
initial data Γ0 provided that the Frank diagram

Frank γ = {p ∈ RN ; γ(p) ≤ 1} (0.0.4)

has a smooth, strictly convex boundary in the sense that all inward principal
curvatures are positive. For the Gaussian curvature flow equations and the affine
curvature flow equation the equation may not be parabolic for general initial data.
It resembles solving the heat equation backward in time, so for general initial data
it is not solvable. However, if we restrict ourselves to strictly convex initial surfaces,
the problems are strictly parabolic around the initial surfaces and locally uniquely
solvable. A standard method to construct a unique local solution is to analyse an
equation of a “height” function, where the evolving surface is parametrized by the
height (or distance) from the initial surface. See for example a paper by X.-Y.
Chen (1991), where he discussed (0.0.2) with γ(p) = |p|, β ≡ 1, a = 1. The major
machinery is the classical parabolic theory in a book of O. A. Ladyžehnskaya, V.
A. Solonnikov and N. N. Uralćeva (1968) since the equation of a height function
is a strictly parabolic equation of second order (around zero height) although it is
nonlinear. For (0.0.3) the equation of a height function is of first order so a local
smooth solution can be constructed by a method of characteristics. However, as we
see later, such a local smooth solution may cease to be smooth in a finite time and
singularities may develop even for the mean curvature flow equation where a lot


