ENVIRONMENTAL SCIENCE AND ENGINEERING

Arie S. Issar (Ed.)

Progressive Development

To Mitigate the Negative Impact of Global Warming on the Semi-arid Regions

Environmental Science and Engineering

Series Editors: R. Allan • U. Förstner • W. Salomons

For further volumes: http://www.springer.com/series/7487

Arie S. Issar (Ed.)

Progressive Development

To Mitigate the Negative Impact of Global Warming on the Semi-arid Regions

Editor Arie S. Issar Ben Gurion University of the Negev J. Blaustein Institutes for Desert Research Sede Boker Campus 84990, Israel issar@bgu.ac.il

ISSN 1863-5520 ISBN 978-3-642-10639-2 DOI 10.1007/978-3-642-10640-8 Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2009943739

© Springer-Verlag Berlin Heidelberg 2010

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

This book is dedicated to the memory of Professor Hugues Faure (1928–2003), a pioneer in many fields of science, a friend and a partner in developing the idea of utilization of fossil water found under the deserts.

Hugues Faure was among the first scientists to investigate the impact of Quaternary climate changes on the ground water resources of the Sahara. In this connection, he was the first to discover and investigate the paleo-lakes of the Sahara. In 1968, he was appointed Professor at the Pierre and Marie Curie University of Paris. In 1969, he served as President of the Technical Committee of Geology at ORSTOM ("Office de la Recherche Scientifique d'Outre-Mer") and in 1970 he became Director of the Laboratory for Quaternary Geology (LGQ). From 1982 to 1987, he served as President of the International Union for Quaternary Research (INQUA). All these activities in the cause of national and international science organizations did not impede his creative and incessant research and teaching in the field of Quaternary geology with special emphasize on the study of the carbon cycle during the Last Glacial Maximum (LGM) and the Holocene Epoch.

Let his memory be blessed

Contents

Part	I Progressive Development – Human Society Can Mitigate the Negative Impacts of Aridization Due to Global Warming	
1	The Past is the Key to the FutureArie S. Issar	3
2	Present Global Warming, What Will Be Its Future Impact? Arie S. Issar	7
3	Malthusian and Neo-Malthusian Prophecies of Calamity Arie S. Issar	13
4	The Principles of "Sustainable Development" a Result of Neo-Malthusian Conceptual Model	19
5	The Theoretical Basis Behind the Falsification of theTheory of Malthus and Verification of Condorcet'sConfuted ModelArie S. Issar	23
6	"Progressive Development" the Modern Version of Condorcet's Conceptual Model	27
7	Development of Groundwater, the Fundamental Resource of Projects Based on the Principle of Progressive Development Arie S. Issar	33
8	Progressive Development by Greening the Deserts, to Mitigate Global Warming and Provide New Land and Income Resources	37

9	Progressive Development and Groundwater Resources of Israel . Arie S. Issar and Eilon Adar	45
10	The Negev Desert of Israel – A Conceptual Plan of a Progressive Development Project for an Arid Region Arie S. Issar and Eilon Adar	57
11	Progressive Development in the Marine Environment Menakhem Ben-Yami and Arie S. Issar	71
12	Progressive Development of New Marine Environmentsfor the Production of Marine VegetationAmir Neori and Arie S. Issar	81
Part	III Progressive Development and Strategic Environmental Assessment	
13	Some Examples of Development in the Desert Belts Bernhard Lucke, Iourii Nikolskii, Hendrike Helbron, and Dmytro Palekhov	89
14	Sustainability in the Desert?	93
15	The Potential of Progressive Development	95
16	The Feasibility of Progressive Development	97
17	Modelling the Impact of Climate Change and Irrigation by the Geographic Law of Soil Zonality	103
18	The Socio-Economic Framework: What Can be Learnedfrom Earlier Failures?Iourii Nikolskii, Bernhard Lucke, Hendrike Helbron, andDmytro Palekhov	115
19	Strategic Environmental Assessment to Assess and Monitor Sustainable Resource Use in Progressive Development: Potentials and LimitationsHendrike Helbron and Dmytro Palekhov	119

Part II Regional Investigations

20	Discussion and Conclusion	131	
	ernhard Lucke, Iourii Nikolskii, Hendrike Helbron, and		
	Dmytro Palekhov		
Part IV Appendices			
App	endix A		

The Project in NE Kenya an Example of a Development	
Project Based on Groundwater, Following the Conceptual	
Model of Progressive Development	137
Appendix B	
A Call for Global Action Replant the Dry Lands!	145

List of Figures

9.1	Israel's national water carrier	49
9.2	Precipitation map Israel	51
9.3	Geo-hydrological cross section over Central Israel	52
9.4	Cross section east west Coastal Plain	53
10.1	A morphological map of the Negev	58
10.2	A water harvesting system in the Negev	63
10.3	General regime of flow in the limestone and Nubian	
	sandstone aquifers	66
17.1	A schematic dependence between a regional modal value of	
	a soil property (f) and the climatic index (I)	105
17.2	Dependence of organic matter content (OM) on the climatic	
	index (I)	107
17.3	Prediction of the regional integral soil fertility index (F)	
	change in Mexico	109
17.4	Prediction of wheat productivity change in Mexico	110
17.5	Dependence of the soil fertility index (F) on the climatic	
	index (I) in Mexico	110
19.1	Integration of SEA into strategic decision-making process	
	[3, 4, 7]	121
A.1	Map of North East Kenya	138
Plate 8		
	100 mm/year, Negev desert Israel	40
Plate 1	0.1 Wine press Avdat (Photo. A. Issar)	61

List of Tables

17.1	Comparison of mean annual irrigation requirements (Ir ^{crop}) recommended for soil conservation (Ir ^{soil}) in different	
	climatic zones of Mexico	112
19.1	Examples of environmental orientation objectives, state of environment indicators and assessment thresholds for the	
	protection of soil and water	125