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Preface

One major area in the theory of statistical signal processing is reduced-rank es-
timation where optimal linear estimators are approximated in low-dimensional
subspaces, e.g., in order to reduce the noise in overmodeled problems, en-
hance the performance in case of estimated statistics, and/or save computa-
tional complexity in the design of the estimator which requires the solution of
linear equation systems. This book provides a comprehensive overview over
reduced-rank filters where the main emphasis is put on matrix-valued filters
whose design requires the solution of linear systems with multiple right-hand
sides. In particular, the multistage matrix Wiener filter, i.e., a reduced-rank
Wiener filter based on the multistage decomposition, is derived in its most
general form.

In numerical mathematics, iterative block Krylov methods are very popu-
lar techniques for solving systems of linear equations with multiple right-hand
sides, especially if the systems are large and sparse. Besides presenting a de-
tailed overview of the most important block Krylov methods in Chapter 3,
which may also serve as an introduction to the topic, their connection to the
multistage matrix Wiener filter is revealed in this book. Especially, the reader
will learn the restrictions of the multistage matrix Wiener filter which are
necessary in order to end up in a block Krylov method. This relationship
is of great theoretical importance because it connects two different fields of
mathematics, viz., statistical signal processing and numerical linear algebra.

This book mainly addresses readers who are interested in the theory of
reduced-rank signal processing and block Krylov methods. However, it in-
cludes also practical issues like efficient algorithms for direct implementation
or the exact computational complexity in terms of the required number of
floating point operations. If the reader is not interested in these practical
aspects, Sections 2.2, 4.3, and 4.4 of this book can be skipped.

Finally, the book covers additionally the application of the proposed lin-
ear estimators to a detection problem occurring at the receiver of a digital
communication system. An iterative (Turbo) multiuser detector is consid-
ered where users are separated via spread spectrum techniques. Besides using
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Monte Carlo simulations, the communication system is investigated in terms
of the expected iterative estimation error based on extrinsic information trans-
fer charts. It should be mentioned that the extrinsic information transfer char-
acteristics that are shown in these charts, are calculated in a semianalytical
way as derived in Section 6.1.2.

This text has been written at the Associate Institute for Signal Processing,
Munich University of Technology, Germany, where I was working as a research
engineer towards my doctoral degree. I would like to express my deep gratitude
to Prof. Wolfgang Utschick who supervised me at the institute. I appreciate his
helpful advice and steady support, as well as the numerous discussions which
had a great impact on this book. Besides, I thank Prof. Michael L. Honig
of the Northwestern University, USA, and Prof. Joachim Hagenauer of the
Institute for Communications Engineering, Munich University of Technology,
both members of my dissertation committee, for reviewing this manuscript. I
also thank Prof. Michael D. Zoltowski of Purdue University, USA, for giving
me the opportunity to stay at Purdue University in winter 2000/2001 and
summer 2004. In fact, he initiated my research on the multistage Wiener filter
and Krylov methods. Further, I would like to thank Prof. Josef A. Nossek of
the Institute for Circuit Theory and Signal Processing, Munich University of
Technology, for his support.

Finally, many thanks to all the excellent students which I had the chance
to supervise at the Munich University of Technology. Their research results
deeply influenced this book. Moreover, I thank all my colleagues at the insti-
tute for the nice atmosphere and the inspiring discussions.

Munich, March 2007 Guido Dietl
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