
Ikuo Towhata Geotechnical Earthquake Engineering

Springer Series in Geomechanics and Geoengineering

Editors: Wei Wu · Ronaldo I. Borja

Geotechnical Earthquake Engineering

Professor Wei Wu, Institut für Geotechnik, Universität für Bodenkultur, Feistmantelstraße 4, 1180 Vienna, Austria. E-mail: wei.wu@boku.ac.at

Professor Ronaldo I. Borja, Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305-4020, USA. E-mail: borja@stanford.edu

Author

Ikuo Towhata Professor of Geotechnical Engineering Department of Civil Engineering University of Tokyo 7-3-1, Hongo, Bunkyo-Ku Tokyo 113-8656 Japan Email:towhata@geot.t.u-tokyo.ac.jp

ISBN 978-3-540-35782-7

ISBN 978-3-540-35783-4 (eBook)

DOI 10.1007/978-3-540-35783-4

Springer Series in Geomechanics and Geoengineering

Library of Congress Control Number: 2008920290

© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Type setting by the authors and Scientific Publishing Services Pvt. Ltd.

Printed in acid-free paper

543210

springer.com

Preface

This book is a product of my long-term activities in both education and research. Its publication was made possible by a financial support supplied by the Ministry of Education, Culture, Sports, Science and Technology. As for education, I was told for the first time in 1985 to teach soil dynamics in Asian Institute of Technology in Bangkok, Thailand. I collected experimental and field findings from many publications and made a small series of handouts. Since computer technologies were not well advanced in mid 80s, the handouts were products of cut-and-paste in the physical sense. Many pages were even handwritten. Afterwards, I started to teach the same subject in 1995 at University of Tokyo. Since then I have added more information from field investigation and laboratory tests as well as analyses. It has become possible to put all in an electronic media that makes teaching easier. Readers can find that this book includes Japanese writing among English text. This is because I use this text for teaching in Tokyo.

The main aim of this book is a collection of data which is useful in understanding the state-of-art technology and its application to new topics. Understanding the fundamental issues is important because practice makes use of many assumptions, hypotheses, and way of thinking. It has been my policy to show reasons why practice employs those ideas by showing experimental and field backgrounds. This idea does not change even today.

Collecting the background information is not very easy for an individual person. It is necessary to read many publications; some were published in the first half of the 20th Century, and others in domestic publications. Not being impossible, this information collection is firstly a time-consuming business. Secondly, the access to old publication may not be easy to everybody. I am therefore attempting in this book to collect information as much as possible so that the new generation of readers can save time in studying. Many figures were therefore reproduced from the original publications. Moreover, I tried to visit important sites and take photographs in order to show the ideas in practice to be meaningful. Although the result is not perfect, information in this book will be helpful when readers have to understand the meaning of present practice and improve it in future. This is particularly important because the development of our society generates new kinds of problems and new approach is continuously required.

One major problem in this book is the enormous amount of information. For very young readers who have just started geotechnical engineering and soil mechanics, it is more important to get the overall scope than learning details. The total number of pages and contents in this book may prevent their efforts. In this regard, I decided to classify the contents into three categories; elementary, advanced, and miscellaneous. Readers can pick up only pages of their interest in place of reading from the first page to the last. The miscellaneous content is not necessarily less important; sometimes many interesting topics are therein found. It is recommendable therefore that young readers take a quick look at those pages as well. On the other hand, it is not expected for readers to start reading from the first page and continue till the last.

I do hope that information in this book will help readers develop their knowledge and career in the discipline of geotechnical engineering. Certainly the contents of this book miss many important issue. I am going to show additions and modifications in my home page. Readers are advised to visit occasionally the site of Geotechnical Engineering Laboratory, Department of Civil Engineering, University of Tokyo (URL : http://geotle.t.u-tokyo.ac.jp).

Ikuo Towhata June, 2007.

List of Contents

The following symbols indicate the types of respective chapters;

Chapters concerning elementary topics: \bigcirc ,
advanced topics: \bigcirc ,
and
miscellaneous topics: \bigcirc *.

PART 1 KNOWLEDGE OF SOIL MECHANICS

Chapter 1 BASIC PRINCIPLES IN SOIL MECHANICS

Section 1.1	PHYSICAL PROPERTIES OF SOIL	4	
Section 1.2	WEIGHT AND DENSITY OF SOIL	6	
Section 1.3	EFFECTIVE STRESS AND PORE WATER PRESSURE	7	
Section 1.4	CONSIDERATION AND VOLUME CHANGE	10	
Section 1.5	SHEAR DEFORMATION AND STRENGTH OF SAND	12	
Section 1.6	DILATANCY OR SHEAR-INDUCED VOLUME CHANGE	13	
Section 1.7	UNDRAINED OR CONSTANT-VOLUME SHEAR TEST	15	
Section 1.8	EXCESS PORE WATER PRESSURE AND STRESS PATH DIAGRAM	16	
Section 1.9	TRIAXIAL SHEAR DEVICE	17	
Section 1.10	MEMBRANE PENETRATION	19	*
Section 1.11	ELEMENTARY DYNAMICS	21	
Section 1.12	STANDARD PENETRATION TEST	22	
Section 1.13	FLOW OF GROUND WATER	24	
Section 1.14	SHEAR BAND	26	

PART 2 PROBLEMS CONCERNING SHAKING OF SOFT GROUND UNDERGOING EARTHQUAKE LOADING

Chapter 2 INTRODUCTION

Section 2.1	OBJECTIVES OF EARTHQUAKE GEOTECHNICAL ENGINEERING	32	\square
Section 2.2	GEOTECHNICAL PROBLEMS ENCOUNTERED		
	DURING EARTHQUAKES	33	\square
Section 2.3	SCHEMATIC DIAGRAM TO SHOW RELATIONSHIP		
	AMONG GEOTECHNICAL SEISMIC PROBLEMS	34	

Chapter 3 SEISMOLOGICAL KNOWLEDGE

Section 3.1	RUPTURE OF FAULT AS A CAUSE OF EARTHQUAKE	36	€ [™]
Section 3.2	REGIONS WHERE BIG EARTHQUAKE IS LIKELY TO OCCUR	38	* **
Section 3.3	RESERVOIR-TRIGGERED SEISMICITY	40	€ [™]

X List of Contents

Chapter 4 WAVE PROPAGATION IN ELASTIC MEDIUM

Section 4.1	EARTHQUAKE WAVES : S WAVE	43	
Section 4.2	EARTHQUAKE WAVES : P WAVE	44	
Section 4.3	IDEALIZATION OF VERTICAL WAVE PROPAGATION	46	
Section 4.4	VERTICAL PROPAGATION OF "S" WAVE IN LEVEL GROUND	47	\square
Section 4.5	SOLUTION OF S-WAVE PROPAGATION IN REAL NUMBERS	48	
Section 4.6	EXERCISE NO.1 ON AMPLIFICATIN OF GROUND MOTION	50	
Section 4.7	EARTHQUAKE WAVES: RAYLEIGH WAVE	51	
Section 4.8	EARTHQUAKE WAVES: LOVE WAVE	53	* *
Section 4.9	RESPONSE OF ELASTIC GROUND TO SURFACE EXCITATION	54	
Section 4.10	WAVE TRANSMISSION AND REFLECTION AT INTERFACE	55	*
Section 4.11	CALCULATION OF SEISMIC WAVE ENERGY	56	
Section 4.12	TRAFFIC-INDUCED GROUND VIBRATION	57	\square

Chapter 5 EARTHQUAKE EFFECTS

Section	5.1	INTENSITY OF EARTHQUAKE MOTION	60	\square
Section	5.2	REVISED EARTHQUAKE INTENSITY	62	\square
Section	5.3	INSTRUMENTAL DETERMINATION OF SEISMIC INTENSITY	63	€ [™]
Section	5.4	EARTHQUAKE MAGNITUDES	65	
Section	5.5	TIME HISTORY OF GROUND MOTION	67	
Section	5.6	EFFECTS OF LOCAL SOIL CONDITIONS ON		
		MAXIMUM ACCELERATION	68	
Section	5.7	SOME FAMOUS EARTHQUAKE MOTION RECORDS	69	
Section	5.8	GROUND MOTION DURING 1985 MEXICAN EARTHQUAKE	70	
Section	5.9	POWER OF ACCELERATION TIME HISTORY	72	€ [™]
Section	5.10	DISTANCE FROM SOURCE OF EARTHQUAKE	73	
Section	5.11	ESTIMATION OF INTENSITY OF EARTHQUAKE MOTION	74	
Section	5.12	ESTIMATION OF DURATION OF EARTHQUAKE MOTION	75	€ [™]
Section	5.13	DETERMINATION OF DESIGN EARTHQUAKE MOTION	76	€ [%]
Section	5.14	SEISMIC DAMAGE IN TRADITIONAL HOUSES	78	
Section	5.15	RECONNAISSANCE STUDY OF EARTHQUAKE-INDUCED		
		DAMAGE	83	
Chapter 6	DYNA	MIC RESPONSE ANALYSIS		
Section	6.1	RATE-DEPENDENT BEHAVIOUR OF CLAY	88	€ [™]
Section	6.2	SIGNIFICANCE OF COMPLEX ANALYSIS	89	Ē
Section	6.3	TRANSIENT RESPONSE	92	€×
Section	6.4	ANALYSES IN FREQUENCY DOMAIN AND TIME DOMAIN	93	€ [%]
Section	6.5	NUMERICAL INTEGRATION OF EQUATION OF MOTION		
		IN THE TIME DOMAIN	95	
Section	6.6	NEWMARK'S β METHOD	97	
Section	6.7	INTRODUCTION TO SEISMIC RESPONSE ANALYSIS	100	
Section	6.8	AMPLIFICATION OF MOTION IN SURFACE ALLUVIUM	102	

	Lis	st of Contents	XI
Section 6.9	SIGNIFICANCE OF OUTCROP MOTION	104	
Section 6.10	SEISMIC RESPONSE OF MULTI-LAYERED GROUND	106	
Section 6.11	AMPLIFICATION OF MOTION AT THE TOP OF HILL	107	
Section 6.12	ANALYSIS ON HILL-INDUCED AMPLIFICATION	108	€ [™]
Section 6.13	CALCULATED AMPLIFICATION EFFECTS OF		
	HILLY TOPOGRAPHY	110	€ [™]
Section 6.14	OBSERVED TOPOGRAPHIC EFFECTS	111	
Section 6.15	THEORY OF BESSEL FUNCTIONS	113	* *
Section 6.16	INFINITE BOUNDARY CONDITION	114	€ [™]
Section 6.17	EXERCISE NO.2 OF DYNAMIC RESPONSE ANALYSIS ON		_
	ELASTIC GROUND	118	
Chapter 7 PSEU	UDOSTATIC LIMIT EQUILIBRIUM ANALYSIS		
Section 7.1	SEISMIC COEFFICIENT	121	6
Section 7.2	MODIFIED METHOD OF SEISMIC COEFFICIENT	124	
Section 7.3	VERTICAL MOTION	126	
Section 7.4	DIRECTION OF SEISMIC INERTIA FORCE IN DESIGN	127	* *
Chaptor 8 FIFI	D INVESTIGATION		
-		120	· <u> </u>
Section 8.1	FIELD INVESTIGATION ON SHEAR WAVE VELOCITY	130	
Section 8.2	SUSPENSION-TYPE DOWNHOLE SURVEY	131	
Section 8.3	CROSS-HOLE SURVEY	133	
Section 8.4	CORRELATION BETWEEN SPT-N AND Vs OF ALLUVIAL SOIL	-	
Section 8.5	CORRELATION BETWEEN SPT-N AND Vs OF GRAVELLY SOIL	.S 136	
Section 8.6	CORRELATION BETWEEN SPT- <i>N</i> AND Vs OF PLEISTOCENE SOILS	127	* *
Q 9 7		137	\bullet
Section 8.7	SEISMIC REFRACTION METHOD FOR SUBSURFACE	100	₽ ¥
~	EXPLORATION	138	
Section 8.8	STACKING TECHNIQUE TO REMOVE NOISE FROM SIGNA		*
Section 8.9	SWEDISH WEIGHT SOUNDING	142	
Section 8.10	MICROTREMOR	143	
Section 8.11	SUBSURFACE EXPLORATION BY SURFACE WAVE RECORD	DS 147	
Chapter 9 DYN	AMIC RESPONSE OF COMPLEX-MODULUS MODEL		
Section 9.1	COMPLEX STRESS-STRAIN MODELING	150	
Section 9.2	DAMPING RATIO IN SOIL DYNAMICS AND		
	CRITICAL DAMPING RATIO	152	*
Section 9.3	DAMPED OSCILLATION OF COMPLEX-MODULUS MODEL	153	
Section 9.4	FORCED OSCILLATION OF COMPLEX-MODULUS MODEL	155	
EXERCISE	CALCULATION OF AMPLIFICATION FACTOR	156	
Section 9.5	WAVE PROPAGATION IN COMPLEX-MODULUS MEDIUM	157	
Section 9.6	SOLUTION OF REAL NUMBERS IN COMPLEX-MODULUS		
	GROUND	159	* *

XII List of Contents

Section 9.7	OUTCROP AMPLIFICATION IN COMPLEX-MODULUS GROUND	160	
Section 9.8	EXERCISE NO.4 RESPONSE ANALYSIS OF		
	MULTILAYERED DEPOSITS	162	
Section 9.9	VARIATION OF SHEAR MODULUS AT INTERFACE OF SOIL		
	LAYERS	163	€ [™]
Section 9.10	EQUIVALENT LINEAR MODELING	165	
Section 9.11	THEORY OF FOURIER SERIES	166	€ [™]
Section 9.12	SPECTRUM ANALYSIS BY FOURIER SERIES	168	
Section 9.13	DYNAMIC ANALYSIS WITH EQUIVALENT LINEAR MODEL	171	
Section 9.14	EXAMPLE OF EQUIVALENT LINEAR ANALYSIS	172	
EXERCISE	NO.5 EQUIVALENT LINEAR METHOD OF ANALYSIS	173	
Section 9.15	DECONVOLUTION OF EARTHQUAKE MOTION	175	€×
Section 9.16	FURTHER REMARKS ON EQUIVALENT LINEAR MODEL	178	€ [™]

Chapter 10 LABORATORY TESTS ON DYNAMIC PROPERTIES OF SOILS

Section 10.1	RESONANT COLUMN TEST OF SOILS	181	
Section 10.2	GENERAL PRINCIPLE IN INTERPRETATION OF STRAIN		
	AMPLITUDE EFFECTS ON SHEAR MODULUS AND		
	DAMPING RATIO	183	
Section 10.3	FACTORS THAT AFFECT MODULUS AND DAMPING OF SAND	184	
Section 10.4	FACTORS THAT AFFECT MODULUS AND DAMPING OF CLAY	185	
Section 10.5	SHEAR MODULUS OF SAND AT SMALL STRAIN AMPLITUDE	186	
Section 10.6	EFFECTS OF STRAIN AMPLITUDE ON SHEAR MODULUS	189	
Section 10.7	EFFECTS OF EFFECTIVE STRESS ON SHEAR MODULUS OF SAND	190	
Section 10.8	DAMPING RATIO OF SAND	191	
Section 10.9	RATE DEPENDENT NATURE OF CLAY	192	€ [™]
Section 10.10	EFFECTS OF PLASTICITY ON CYCLIC BEHAVIOR OF CLAY	193	€ [™]
Section 10.11	EFFECTS OF DENSITY ON SHEAR MODULUS OF CLAY	194	€ [™]
Section 10.12	EFFECTS OF AGE ON SHEAR MODULUS OF CLAY	195	€ [™]
Section 10.13	EFFECTS OF STRAIN AMPLITUDE ON SHEAR MODULUS		
	OF CLAY	196	
Section 10.14	DEGRADATION OF SHEAR MODULUS OF CLAY	197	€ [™]
Section 10.15	DAMPING RATIO OF CLAY	198	
Section 10.16	EFFECTS OF CONSOLIDATION TIME ON DAMPLING OF CLAY	199	€ [™]
Section 10.17	G- γ AND h- γ CURVES OF UNDISTURBED SAMPLES	200	
Section 10.18	DYNAMIC DEFORMATION OF GRAVELLY SOILS	201	
Section 10.19	COLLECTING UNDISTURBED SOIL SAMPLES	202	
Section 10.20	FREEZING TECHNIQUE OF SAND SAMPLING	204	
Section 10.21	EXTENT OF SAMPLE DISTURBANCE	205	€ [™]
Section 10.22	CORRELATION BETWEEN SURFACE VELOCITY AND		
	STRAIN IN SUBSOIL	206	
Section 10.23	NONLINEAR CYCLIC BEHAVIOR OF SODIUM BENTONITE	208	
Section 10.24	NONLINEAR CYCLIC BEHAVIOR OF MUNICIPAL SOLID		
	WASTE	210	€ [™]

Chapter 11 STRESS-STRAIN MODELS

Section 11.1	HYPERBOLIC AND RAMBERG-OSGOOD STRESS-STRAIN		
	MODELS	218	
Section 11.2	DILATANCY OF SAND SUBJECTED TO CYCLIC		
	DRAINED SHEAR	221	
Section 11.3	THEORY OF ELASTOPLASTICITY	224	Ш
Section 11.4	DILATANCY UNDER CYCLIC LOADING	228	
Section 11.5	MULTI-NONLINEAR SPRING MODEL	230	
Section 11.6	DISCRETE ELEMENT ANALYSIS	232	6 **

Chapter 12 APPLICATION OF SEISMIC INERTIA FORCE

Section	12.1	CALCULATION OF EARTHQUAKE-INDUCED DISPLACEMENT	236	\square
Section	12.2	CORRELATION BETWEEN RESIDUAL DISPLACEMENT,		
		BASE ACCELERATION AND BASE VELOCITY	238	€ [%]
Section	12.3	RELATIONSHIP BETWEEN SEISMIC COEFFICIENT AND		
		MAXIMUM ACCELERATION DURING EARTHQUAKES	239	
Section	12.4	BRIEF ANALYSIS ON SEISMIC COEFFICIENT		
		EQUIVALENT TO MAXIMUM ACCELERATION	240	€ [™]
Section	12.5	SEISMIC EARTH PRESSURE ON RETAINING WALL	241	
Section	12.6	SHAKING MODEL TEST ON SEISMIC EARTH PRESSURE	244	€ [™]
Section	12.7	COMPARISON OF STATIC AND SEISMIC ACTIVE EARTH		
		PRESSURES	247	* *
Section	12.8	MODIFIED MONONOBE-OKABE THEORY	248	
Chapter 13	SEISN	AIC FORCES EXERTED ON STRUCTURES		
Section	13.1	ANALYSIS ON SOIL-STRUCTURE INTERACTION	252	
Section	13.2	SEISMIC DESIGN OF EMBEDDED PIPELINE	255	
Section	13.3	AMPLIFICATION: SOIL COLUMN Vs SPRING-MASS		
		MODEL	257	*
Section	13.4	RIGOROUS COMPARISON OF SOIL COLUMN AND		
		EQUIVALENT SPRING-MASS MODEL	259	* *
Section	13.5	SEISMIC WATER PRESSURE ON WALL	261	
Section	13.6	DYNAMIC EARTH PRESSURE EXERTED BY WATER		
		SATURATED BACKFILL	263	
Section	13.7	DAMAGE IN TUNNELS CAUSED BY EARTHQUAKES	265	
Section	13.8	NODULAR PILE	267	€×
Chantar 14	CEICA	ALC DEHAVIOD OF SLODES AND EMDANIZMENTS		

Chapter 14 SEISMIC BEHAVIOR OF SLOPES AND EMBANKMENTS

Section 14.1	CLASSIFICATION OF SEISMIC FAILURE OF ARTIFICIAL		
	EMBANKMENT	271	\square
Section 14.2	EXAMPLE OF SLIDING FAILURE OF EMBANKMENT		
	DUE TO EARTHQUAKES	273	

XIV List of Contents

Section 14.3	EXAMPLE OF SLUMPING OF EMBANKMENT DUE TO		
	EARTHQUAKES	274	
Section 14.4	STATISTICS ON TYPES OF SUBSIDENCE OF EMBANKMENT		
	DUE TO EARTHQUAKES	276	€×
Section 14.5	PERFORMANCE-BASED SEISMIC DESIGN	277	\square
Section 14.6	INQUIRY ON ALLOWABLE SEISMIC DISPLACEMENT	280	
Section 14.7	PRINCIPLE OF PERFORMANCE-BASED SEISMIC DESIGN		
	AND LIFE CYCLE COST	282	
Section 14.8	RESTORATION OF DAMAGED FILL RESTING ON SOFT SOIL	288	

Chapter 15 LANDSLIDES

Section 15.1	EARTHQUAKE-INDUCED LANDSLIDES	291	\square
Section 15.2	YUNGAY CITY DESTROYED BY EARTHQUAKE-INDUCED		
	DEBRIS FLOW	294	* *
Section 15.3	TSAOLING LANDSLIDE IN TAIWAN	296	* *
Section 15.4	SHEAR TESTS ON LANDSLIDE MECHANISM	298	€×
Section 15.5	OTHER LANDSLIDES CAUSED BY CHICHI EARTHQUAKE,		
	TAIWAN	301	* *
Section 15.6	ASSESSMENT OF SEISMIC LANDSLIDE HAZARD	302	
Section 15.7	EARTHQUAKE-INDUCED SUBMARINE LANDSLIDES	306	* *
Section 15.8	NONSEISMIC SUBMARINE LANDSLIDES	308	€ [%]
Section 15.9	DERIVATION OF FORMULA FOR APPARENT		
	FRICTIONAL ANGLE	310	€ [%]

Chapter 16 SEISMIC FAULTS

Section 16.1	TOPICS RELATED TO FAULT	315	\square
Section 16.2	EXAMPLE OF REVERSE FAULT	317	
Section 16.3	EXAMPLE OF NORMAL FAULT	319	\square
Section 16.4	EXAMPLE OF STRIKE-SLIP FAULT	320	
Section 16.5	EFFECTS OF FAULT MOVEMENT ON RUPTURE IN		
	SURFACE SOIL	322	€ [™]
Section 16.6	DISTORTION AT GROUND SURFACE PRODUCED BY		
	SUBSURFACE FAULT	324	● [%]
Section 16.7	EFFECTS OF EARTHQUAKE FAULT ON TUNNELS	326	\square
Section 16.8	EFFECTS OF EARTHQUAKE FAULT ON EMBEDDED PIPELINES	328	\square
Section 16.9	FAULT-INDUCED SUBSIDENCE OF GROUND	330	* **
Section 16.10	TECTONICALLY INDUCED GROUND SUBSIDENCE INTO		
	SEA DURING STRONG EARTHQUAKES IN KOHCHI, JAPAN	331	*
Section 16.11	EARTHQUAKE-INDUCED SUBSIDENCE IN OTHER PARTS		
	OF THE WORLD	333	● [%]
Section 16.12	GEOTECHNICAL ASPECTS OF TSUNAMI	335	

PART 3 LIQUEFACTION

Chapter 17 FEATURES OF LIQUEFACTION-INDUCED DAMAGES

Section	17.1	INTRODUCTION TO SEISMIC LIQUEFACTION	344	
Section	17.2	HISTORY OF PROBLEMS AND RESEARCH TOPICS		
		CONCERNING LIQUEFACTION	346	
Section	17.3	LOSS OF BEARING CAPACITY CAUSED BY LIQUEFACTION	347	\square
Section	17.4	SUBSIDENCE OF EMBANKMENT DUE TO LIQUEFACTION	349	
Section	17.5	FLOATING OF EMBEDDED STRUCTURES	351	\square
Section	17.6	LATERAL DISPLACEMENT OF RETAINING WALL	352	\square
Section	17.7	LATERAL MOVEMENT OF LIQUEFIED SLOPE	353	\square
Section	17.8	GROUND SUBSIDENCE AFTER LIQUEFACTION	356	\square
Section	17.9	LIQUEFACTION-INDUCED SUBSIDENCE OF RIVER DIKES	357	\square
Section	17.10	LESSONS FROM 2000 TOTTORIKEN-SEIBU EARTHQUAKE	358	€×
Section	17.11	EARTHQUAKE INDUCED GROUND SUBSIDENCE	359	€×
Section	17.12	EARTHQUAKE MOTION RECORDED ON LIQUEFIED GROUND	360	\square
Section	17.13	SUBSIDENCE OF SHALLOW FOUNDATION DUE TO		
		SUBSOIL LIQUEFACTION	361	\square
Section	17.14	LIQUEFACTION DAMAGE TO PRIVATE HOUSES	363	
Section	17.15	SUMMARY OF CASE HISTORIES	366	
Chapter 18	MEC	HANISM OF ONSET OF LIQUEFACTION		
Section	18.1	MECHANISM OF LIQUEFACTION	370	
Section	18.2	SAND BOILING	372	
Section	18.3	DISSIPATION OF EXCESS PORE WATER PRESSURE	374	
Section	18.4	PALEOLIQUEFACTION	375	€ [%]
Section	18.5	EXCAVATION OF BURIED SAND BOIL	376	€ [%]
Section	18.6	HOT LIQUEFACTION; TRUE OR NOT TRUE	377	● [%]
Section	18.7	UNDRAINED SHEAR TESTS OF SAND	378	
Section	18.8	TORSION SHEAR DEVICE WITH HOLLOW CYLINDRICAL		
		SPECIMEN	380	
Section	18.9	EFFECTS OF SUBSURFACE LIQUEFACTION ON INTENSITY		
		OF ACCELERATION RESPONSE AT SURFACE	382	
Section	18.10	CONSOLIDATION AFTER LIQUEFACTION	383	
Section	18.11	LIQUEFACTION POTENTIAL AND SURFACE GEOLOGY	384	
Section	18.12	MAXIMUM DISTANCE OF LIQUEFACTION SITES FROM		
		SOURCE AREA	386	
Section	18.13	EFFECTS OF AGEING ON LIQUEFACTION STRENGTH OF FILL	387	* *
Section	18.14	LIQUEFACTION IN NATURAL DEPOSIT OF LOOSE SAND	390	
Section	18.15	SIGNIFICANCE OF CYCLIC TRIAXIAL TESTS IN		
		LIQUEFACTION PROBLEMS	391	\square
Section		SKEMPTON'S B VALUE	392	
Section		DEGREE OF SATURATION AND SKEMPTON'S B VALUE	394	S
Section	18.18	EFFECTS OF SAMPLE PREPARATION METHODS ON RESISTANCE TO LIQUEFACTION IN LABORATORY SHEAR TESTS	396	

XVI List of Contents

Chapter 19 ASSESSMENT OF LIQUEFACTION POTENTIAL

Section 19.1	SIGNIFICANCE OF STRESS RATIO	402	
Section 19.2	STRESS RATIO IN THE FIELD	404	\square
Section 19.3	LIQUEFACTION CURVE	406	\square
Section 19.4	FIELD AND LABORATORY STRESS RATIO	408	€×
Section 19.5	EFFECTS OF STATIC SHEAR STRESS ON RESISTANCE		
	AGAINST LIQUEFACTION	410	
Section 19.6	IMPORTANCE OF TWO-WAY LOADING IN CYCLIC SHEAR		
	WITH INITIAL STATIC STRESS	412	
Section 19.7	EFFECTS OF K _o CONSOLIDATION ON LIQUEFACTION		
	RESISTANCE OF SAND	414	
Section 19.8	LIQUEFACTION RESISTANCE OF SAND UNDER K _o CONDITION		
	AND OVER CONSOLIDATION	415	
Section 19.9	EFFECTS OF CONFINING PRESSURE ON LIQUEFACTION		
	RESISTANCE	418	
Section 19.10	EFFECTS OF IRREGULAR LOADING ON RESISTANCE		
	AGAINST LIQUEFACTION	420	
Section 19.11	CORRECTION OF STRESS RATIO WITH DEPTH	422	
Section 19.12	EFFECTS OF MULTI-DIRECTIONAL SHEAR ON		
	LIQUEFACTION RESISTANCE	424	* *

Chapter 20 BEHAVIOR OF SOIL UNDERGOING CYCLIC UNDRAINED LOADING

Section 20.1	LIQUEFACTION RESISTANCE OF DENSE SAND	430	
Section 20.2	CYCLIC UNDRAINED SHEAR OF GRAVEL	432	
Section 20.3	CYCLIC UNDRAINED SHEAR OF CLAY	433	*
Section 20.4	DOES CLAY LIQUEFY?	435	* *
Section 20.5	LIQUEFACTION OF TAILING MATERIAL	437	* *
Section 20.6	EMPIRICAL RELATIONSHIP BETWEEN EXCESS PORE		
	WATER PRESSURE AND NUMBER OF LOADING CYCLES	439	
Section 20.7	SIMPLE ASSESSMENTS OF PORE PRESSURE RISE	440	
Section 20.8	USE OF STRAIN ENERGY IN MODELLING OF SOIL		
	UNDERGOING CYCLIC LOADING	441	* *
Section 20.9	CORRELATION BETWEEN SHEAR STRAIN ENERGY AND		
	EXCESS PORE WATER PRESSURE	442	*
Section 20.10	ENERGY CORRELATION OF PORE PRESSURE AT STATES		
	OF SHEAR STRESS	444	*
Section 20.11	STRESS-STRAIN BEHAVIOR REPRODUCED FROM		
	ACCELERATION RECORDS	446	€×

Chapter 21 IN-SITU TESTS ON LIQUEFACTION POTENTIAL OF SUBSOILS

Section 21.1	USE OF SPT FOR ASSESSING LIQUEFACTION POTENTIAL	450	
Section 21.2	SPT-N OBSERVED IN NIIGATA CITY	452	