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Preface

The random-cluster model was invented by Cees [Kees] Fortuin and Piet Kasteleyn
around 1969 as a unification of percolation, Ising, and Potts models, and as an
extrapolation of electrical networks. Their original motivation was to harmonize
the series and parallel laws satisfied by such systems. In so doing, they initiated
a study in stochastic geometry which has exhibited beautiful structure in its own
right, and which has become a central tool in the pursuit of one of the oldest
challenges of classical statistical mechanics, namely to model and analyse the
ferromagnet and especially its phase transition.

The importance of the model for probability and statistical mechanics was
not fully recognized until the late 1980s. There are two reasons for this period
of dormancy. Although the early publications of 1969–1972 contained many of
the basic properties of the model, the emphasis placed there upon combinatorial
aspects may have obscured its potential for applications. In addition, many of
the geometrical arguments necessary for studying the model were not known
prior to 1980, but were developed during the ‘decade of percolation’ that began
then. In 1980 was published the proof that pc = 1

2 for bond percolation on the
square lattice, and this was followed soon by Harry Kesten’s monograph on two-
dimensional percolation. Percolation moved into higher dimensions around 1986,
and many of the mathematical issues of the day were resolved by 1989. Interest
in the random-cluster model as a tool for studying the Ising/Potts models was
rekindled around 1987. Swendsen and Wang utilized the model in proposing an
algorithm for the time-evolution of Potts models; Aizenman, Chayes, Chayes, and
Newman used it to show discontinuity in long-range one-dimensional Ising/Potts
models; Edwards and Sokal showed how to do it with coupling.

One of my main projects since 1992 has been to comprehend the (in)validity
of the mantra ‘everything worth doing for Ising/Potts is best done via random-
cluster’. There is a lot to be said in favour of this assertion, but its unconditionality
is its weakness. The random-cluster representation has allowed beautiful proofs of
important facts including: the discontinuity of the phase transition for large values
of the cluster-factor q , the existence of non-translation-invariant ‘Dobrushin’ states
for large values of the edge-parameter p, the Wulff construction in two and more
dimensions, and so on. It has played important roles in the studies of other classical
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and quantum systems in statistical mechanics, including for example the Widom–
Rowlinson two-type lattice gas and the Edwards–Anderson spin-glass model. The
last model is especially challenging because it is non-ferromagnetic,and thus gives
rise to new problems of importance and difficulty.

The random-cluster model is however only one of the techniques necessary
for the mathematical study of ferromagnetism. The principal illustration of its
limitations concerns the Ising model. This fundamental model for a ferromagnet
has exactly two local states, and certain special features of the number 2 enable
a beautiful analysis via the so-called ‘random-current representation’ which does
not appear to be reproducible by random-cluster arguments.

In pursuing the theory of the random-cluster model, I have been motivated not
only by its applications to spin systems but also because it is a source of beautiful
problems in its own right. Such problems involve the stochastic geometry of
interacting lattice systems, and they are close relatives of those treated in my
monograph on percolation, published first in 1989 and in its second edition in
1999. There are many new complications and some of the basic questions remain
unanswered, at least in part. The current work is primarily an exposition of a fairly
mature theory, but prominence is accorded to open problems of significance.

New problems have arrived recently to join the old, and these concern primarily
the two-dimensional phase transition and its relation to the theory of stochastic
Löwner evolutions. SLE has been much developed for percolation and related
topics since the 1999 edition of Percolation, mostly through the achievements of
Schramm, Smirnov, Lawler, and Werner. We await an extension of the mathemat-
ics of SLE to random-cluster and Ising/Potts models.

Here are some remarks on the contents of this book. The setting for the vast
majority of the work reported here is the d-dimensional hypercubic lattice Zd

where d ≥ 2. This has been chosen for ease of presentation, and may usually
be replaced by any other finite-dimensional lattice in two or more dimensions,
although an extra complication may arise if the lattice is not vertex-transitive. An
exception to this is found in Chapter 6, where the self-duality of the square lattice
is exploited.

Following the introductory material of Chapter 1, the fundamental properties
of monotonic and random-cluster measures on finite graphs are summarized in
Chapters 2 and 3, including accounts of stochastic ordering, positive association,
and exponential steepness.

A principal feature of the model is the presence of a phase transition. Since
singularities may occur only on infinite graphs, one requires a definition of the
random-cluster model on an infinite graph. This may be achieved as for other
systems either by passing to an infinite-volume weak limit, or by studying measures
which satisfy consistency conditions of Dobrushin–Lanford–Ruelle (DLR) type.
Infinite-volume measures in their two forms are studied in Chapter 4.

The percolation probability is introduced in Chapter 5, and this leads to a study
of the phase transition and the critical point pc(q). When p < pc(q), one expects
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that the size of the open cluster containing a given vertex of Zd is controlled
by exponentially-decaying probabilities. This is unproven in general, although
exponential decay is proved subject to a further condition on the parameter p.

The supercritical phase, when p > pc(q), has been the scene of recent major
developments for random-cluster and Ising/Potts models. A highlight has been
the proof of the so-called ‘Wulff construction’ for supercritical Ising models. A
version of the Wulff construction is valid for the random-cluster model subject to
a stronger condition on p, namely that p > p̂c(q) where p̂c(q) is (for d ≥ 3) the
limit of certain slab critical points. We have no proof that p̂c(q) = pc(q) except
when q = 1, 2, and to prove this is one of the principal open problems of the day.
A second problem is to prove the uniqueness of the infinite-volume limit whenever
p �= pc(q).

The self-duality of the two-dimensional square lattice Z2 is complemented by
a duality relation for random-cluster measures on planar graphs, and this allows
a fuller understanding of the two-dimensional case, as described in Chapter 6.
There remain important open problems, of which the principal one is to obtain a
clear proof of the ‘exact calculation’ pc(q) = √q/(1+√q). This calculation is
accepted by probabilists when q = 1 (percolation), q = 2 (Ising), and when q is
large, but the “exact solutions” of theoretical physics seem to have no complete
counterpart in rigorous mathematics for general values of q satisfying q ∈ [1,∞).
There is strong evidence that the phase transition with d = 2 and q ∈ [1, 4) will
be susceptible to an analysis using SLE, and this will presumably enable in due
course a computation of its critical exponents.

In Chapter 7,we consider duality in three and more dimensions. The dual model
amounts to a probability measure on surfaces and certain topological complications
arise. Two significant facts are proved. First, it is proved for sufficiently large q
that the phase transition is discontinuous. Secondly, it is proved for q ∈ [1,∞) and
sufficiently large p that there exist non-translation-invariant ‘Dobrushin’ states.

The model has been assumed so far to be static in time. Time-evolutions may
be introduced in several ways, as described in Chapter 8. Glauber dynamics and
the Gibbs sampler are discussed, followed by the Propp–Wilson scheme known
as ‘coupling from the past’. The random-cluster measures for different values of
p may be coupled via the equilibrium measure of a suitable Markov process on
[0, 1]E , where E denotes the set of edges of the underlying graph.

The so-called ‘random-current representation’ was remarked above for the Ising
model, and a related representation using the ‘flow polynomial’ is derived in
Chapter 9 for the q-state Potts model. It has not so far proved possible to exploit
this in a full study of the Potts phase transition. In Chapter 10, we consider
the random-cluster model on graphs with a different structure than that of finite-
dimensional lattices, namely the complete graph and the binary tree. In each case
one may perform exact calculations of mean-field type.

The final Chapter 11 is devoted to applications of the random-cluster repre-
sentation to spin systems. Five such systems are described, namely the Potts
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and Ashkin–Teller models, the disordered Potts model, the spin-glass model of
Edwards and Anderson, and the lattice gas of Widom and Rowlinson.

There is an extensive literature associated with ferromagnetism, and I have not
aspired to a complete account. Salient references are listed throughout this book,
but inevitably there are omissions. Amongst earlier papers on random-cluster
models, the following include a degree of review material: [8, 44, 136, 149, 156,
169, 240].

I first encountered the random-cluster model one day in late 1971 when John
Hammersley handed me Cees Fortuin’s thesis. Piet Kasteleyn responded enthusi-
astically to my 1992 request for information about the history of the model, and
his letters are reproduced with his permission in the Appendix. The responses
from fellow probabilists to my frequent requests for help and advice have been
deeply appreciated, and the support of the community is gratefully acknowledged.
I thank Laantje Kasteleyn and Frank den Hollander for the 1968 photograph of
Piet, and Cees Fortuin for sending me a copy of the image from his 1971 California
driving licence. Raphaël Cerf kindly offered guidance on the Wulff construction,
and has supplied some of his beautiful illustrations of Ising and random-cluster
models, namely Figures 1.2 and 5.1. A number of colleagues have generously
commented on parts of this book, and I am especially grateful to Rob van den
Berg, Benjamin Graham, Olle Häggström, Chuck Newman, Russell Lyons, and
Senya Shlosman. Jeff Steif has advised me on ergodic theory, and Aernout van
Enter has helped me with statistical mechanics. Catriona Byrne has been a source
of encouragement and support. I express my thanks to these and to others who
have, perhaps unwittingly or anonymously, contributed to this volume.

G. R. G.
Cambridge

January 2006
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Chapter 1

Random-Cluster Measures

Summary. The random-cluster model is introduced, and its relationship to
Ising and Potts models is presented via a coupling of probability measures.
In the limit as the cluster-weighting factor tends to 0, one arrives at electrical
networks and uniform spanning trees and forests.

1.1 Introduction

In 1925 came the Ising model for a ferromagnet, and in 1957 the percolation model
for a disordered medium. Each has since been the subject of intense study,and their
theories have become elaborate. Each possesses a phase transition marking the
onset of long-range order, defined in terms of correlation functions for the Ising
model and in terms of the unboundedness of paths for percolation. These two
phase transitions have been the scenes of notable exact (and rigorous) calculations
which have since inspired many physicists and mathematicians.

It has been known since at least 1847 that electrical networks satisfy so-called
‘series/parallel laws’. Piet Kasteleyn noted during the 1960s that the percolation
and Ising models also have such properties. This simple observation led in joint
work with Cees Fortuin to the formulation of the random-cluster model. This
new model has two parameters, an ‘edge-weight’ p and a ‘cluster-weight’ q .
The (bond) percolation model is retrieved by setting q = 1; when q = 2, we
obtain a representation of the Ising model, and similarly of the Potts model when
q = 2, 3, . . . . The discovery of the model is described in Kasteleyn’s words in
the Appendix of the current work.

The mathematics begins with a finite graph G = (V , E), and the associated
Ising model1 thereon. A random variable σx taking values−1 and+1 is assigned
to each vertex x of G, and the probability of the configuration σ = (σx : x ∈ V )
is taken to be proportional to e−βH(σ ), where β > 0 and the ‘energy’ H (σ ) is the

1The so-called Ising model [190] was in fact proposed (to Ising) by Lenz. The Potts model
[105, 278] originated in a proposal (to Potts) by Domb.
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negative of the sum of σxσy over all edges e = 〈x, y〉 of G. As β increases, greater
probability is assigned to configurations having a large number of neighbouring
pairs of vertices with equal signs. The Ising model has proved extraordinarily
successful in generating beautiful mathematics of relevance to the physics, and it
has been useful and provocative in the mathematical theory of phase transitions
and cooperative phenomena (see, for example, [118]). The proof of the existence
of a phase transition in two dimensions was completed by Peierls, [266], by way
of his famous “argument”.

There are many possible generalizations of the Ising model in which theσx may
take a general number q of values, rather than q = 2 only. One such extension, the
so-called ‘Potts model’, [278], has attracted especial interest amongst physicists,
and has displayed a complex and varied structure. For example, when q is large, it
possesses a discontinuous phase transition, in contrast to the continuous transition
believed to take place for small q . Ising/Potts models are the first of three principal
ingredients in the story of random-cluster models. Note that they are ‘vertex-
models’ in the sense that they involve random variables σx indexed by the vertices
x of the underlying graph. (There is a related extension of the Ising model due to
Ashkin and Teller, [21], see Section 11.3.)

The (bond) percolation model was inspired by problems of physical type, and
emerged from the mathematics literature2 of the 1950s, [70]. In this model for
a porous medium, each edge of the graph G is declared ‘open’ (to the passage
of fluid) with probability p, and ‘closed’ otherwise, different edges having in-
dependent states. The problem is to determine the typical large-scale properties
of connected components of open edges as the parameter p varies. Percolation
theory is now a mature part of probability lying at the core of the study of ran-
dom media and interacting systems, and it is the second ingredient in the story of
random-cluster models. Note that bond percolation is an ‘edge-model’, in that the
random variables are indexed by the set of edges of the underlying graph. (There is
a variant termed ‘site percolation’ in which the vertices are open/closed at random
rather than the edges, see [154, Section 1.6].)

The theory of electrical networks on the graph G is of course more ancient than
that of Ising and percolation models, dating back at least to the 1847 paper, [215],
in which Kirchhoff set down a method for calculating macroscopic properties of
an electrical network in terms of its local structure. Kirchhoff’s work explains in
particular the relevance of counts of certain types of spanning trees of the graph.
To import current language, an electrical network on a graph G may be studied
via the properties of a ‘uniformly random spanning tree’ (UST) on G (see [31]).

The three ingredients above seemed fairly distinct until Fortuin and Kasteleyn
discovered around 1970, [120, 121, 122, 123, 203], that each features within a
certain parametric family of models which they termed ‘random-cluster models’.
They developed the basic theory of such models — correlation inequalities and
the like — in this series of papers. The true power of random-cluster models as

2See also the historical curiosity [323].
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a mechanism for studying Ising/Potts models has emerged progressively over the
intervening three decades.

The configuration space of the random-cluster model is the set of all subsets of
the edge-set E , which we represent as the set� = {0, 1}E of 0/1-vectors indexed
by E . An edge e is termed open in the configuration ω ∈ � if ω(e) = 1, and it
is termed closed if ω(e) = 0. The random-cluster model is thus an edge-model,
in contrast to the Ising and Potts models which assign spins to the vertices of G.
The subject of current study is the subgraph of G induced by the set of open edges
of a configuration chosen at random from � according to a certain probability
measure. Of particular importance is the existence (or not) of paths of open edges
joining given vertices x and y, and thus the random-cluster model is a model in
stochastic geometry.

The model may be viewed as a parametric family of probability measures φp,q

on �, the two parameters being denoted by p ∈ [0, 1] and q ∈ (0,∞). The
parameter p amounts to a measure of the density of open edges, and the parameter
q is a ‘cluster-weighting’ factor. When q = 1, φp,q is a product measure, and the
ensuing probability space is usually termed a percolation model or a random graph
depending on the context. The integer values q = 2, 3, . . . correspond in a certain
way to the Potts model on G with q local states, and thus q = 2 corresponds to the
Ising model. The nature of these ‘correspondences’, as described in Section 1.4, is
that ‘correlation functions’ of the Potts model may be expressed as ‘connectivity
functions’ of the random-cluster model. When extended to infinite graphs, it turns
out that long-range order in a Potts model corresponds to the existence of infinite
clusters in the corresponding random-cluster model. In this sense the Potts and
percolation phase transitions are counterparts of one another.

Therein lies a major strength of the random-cluster model. Geometrical meth-
ods of some complexity have been derived in the study of percolation, and some
of these may be adapted and extended to more general random-cluster models,
thereby obtaining results of significance for Ising and Potts models. Such has been
the value of the random-cluster model in studying Ising and Potts models that it
is sometimes called simply the ‘FK representation’ of the latter systems, named
after Fortuin and Kasteleyn. We shall see in Chapter 11 that several other spin
models of statistical mechanics possess FK-type representations.

The random-cluster and Ising/Potts models on the graph G = (V , E) are de-
fined formally in the next two sections. Their relationship is best studied via a
certain coupling on the product {0, 1}E × {1, 2, . . . , q}V , and this coupling is de-
scribed in Section 1.4. The ‘uniform spanning-tree’ (UST) measure on G is a
limiting case of the random-cluster measure, and this and related limits are the
topic of Section 1.5. This chapter ends with a section devoted to basic notation.


