Günter P. Merker Christian Schwarz Gunnar Stiesch Frank Otto

Simulating Combustion

Simulation of combustion and pollutant formation for engine-development

Günter P. Merker Christian Schwarz Gunnar Stiesch Frank Otto

Simulating Combustion

Simulation of combustion and pollutant formation for engine-development

Simulating Combustion

Günter P. Merker · Christian Schwarz Gunnar Stiesch · Frank Otto

Simulating Combustion

Simulation of combustion and pollutant formation for engine-development

with 242 figures

Prof. Dr.-Ing. habil Günter P. Merker Universität Hannover Institut Technische Verbrennung Welfengarten 1 A 30167 Hannover *merker@itv.-uni-hannover.de*

Prof. Dr.-Ing. Christian Schwarz BMW-Group, EA 31 Hufelandstr. 8a 80788 München christian.schwarz@bmw.de Dr.-Ing. habil Gunnar Stiesch MTU Friedrichshafen GmbH, Abtl. TKV Maybachplatz 1 88045 Friedrichshafen gunnar.stiesch@mtu-online.com

Dr. rer. nat. Frank Otto DaimlerChrysler AG, Abtl. HPC G252 70546 Stuttgart frank.otto@daimlerchrysler.com

Library of Congress Control Number: 2005933399

ISBN 10 3-540-25161-8 Berlin Heidelberg New York ISBN 13 978-3-540-25161-3 Berlin Heidelberg New York

Originally published as Günter P. Merker/Christian Schwarz/Gunnar Stiesch/Frank Otto: Verbrennungsmotoren. Simulation der Verbrennung und Schadstoffbildung

© B. G. Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden, 2004

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to Prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springeronline.com

© Springer-Verlag Berlin Heidelberg 2006 Printed in Germany

The use of general descriptive names, registered names, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and free for general use. Cover design: medionet AG, Berlin Typesetting: Digital data supplied by editors

Printed on acid-free paper 68/3020/m-5 4 3 2 1 0

Preface

The numerical simulation of combustion processes in internal combustion engines, including also the formation of pollutants, has become increasingly important in the recent years, and today the simulation of those processes has already become an indispensable tool when developing new combustion concepts. While pure thermodynamic models are well-established tools that are in use for the simulation of the transient behavior of complex systems for a long time, the phenomenological models have become more important in the recent years and have also been implemented in these simulation programs. In contrast to this, the threedimensional simulation of in-cylinder combustion, i.e. the detailed, integrated and continuous simulation of the process chain injection, mixture formation, ignition, heat release due to combustion and formation of pollutants, has been significantly improved, but there is still a number of challenging problems to solve, regarding for example the exact description of subprocesses like the structure of turbulence during combustion as well as the appropriate choice of the numerical grid.

While chapter 2 includes a short introduction of functionality and operating modes of internal combustion engines, the basics of kinetic reactions are presented in chapter 3. In chapter 4 the physical and chemical processes taking place in the combustion chamber are described. Chapter 5 is about phenomenological multi-zone models, and in chapter 6 the formation of pollutants is described. In chapter 7 and chapter 8 simple thermodynamic models and more complex models for transient systems analyses are presented. Chapter 9 is about the three-dimensional simulation of combustion processes in engines.

We would like to thank Dr. B. Settmacher for reviewing and formatting the text, for preparing the layout, and for preparing the printable manuscript. Only due to her unremitting dedication and her excellent time management the preparation of this book has been possible in the given timeframe. Further on, we would also like to thank Mrs. C. Brauer for preparing all the figures and diagrams contained in this book. The BMW group and the DaimlerChrysler AG contributed to this book by releasing the figures they provided. Last but not least, we would like to thank the Springer-Verlag for the always excellent collaboration.

This book is largely a translation of the second German edition, which has been published in 2004 by the B.G. Teubner-Verlag, whereas the text has been updated if necessary. We would like to thank Mr. Aaron Kuchle for translating the text into English.

Hannover/München/Friedrichshafen/Stuttgart, July 2005

Günter P. Merker Christian Schwarz Gunnar Stiesch Frank Otto

Table of contents

A	Abbreviations and symbols	
1	Introduction	1
	1.1 Preface	1
	1.2 Model-building	1
	1.3 Simulation	2
2	Introduction into the functioning of internal combustion engines	5
	2.1 Energy conversion	5
	2.2 Reciprocating engines	6
	2.2.1 The crankshaft drive	7
	2.2.2 Gas and inertia forces	9 11
	2.2.5 Thermodynamics of the internal combustion on size	11
	2.3 1 Foundations	12
	2.3.2 Closed cycles	17
	2.3.3 Open comparative processes	25
	2.4 Characteristic qualities and characteristic values	28
	2.5 Engine maps	31
	2.5.1 Spark ignition engines	31
	2.5.2 Diesel engines	33
	2.6 Charging	35
	2.6.1 Charging methods	35
	2.6.2 Supercharging 2.6.3 Constant-pressure turbocharging	38
	2.6.4 Pulse turbocharging	41
3	Foundations of reaction kinetics	44
	3.1 Chemical equilibrium	44
	3.2 Reaction kinetics	47
	3.3 Partial equilibrium and quasi-steady-state	48
	3.4 Fuels	50
	3.4.1 Chemical structure	50
	3.4.2 Physical and chemical properties	53
	3.5 Oxidation of hydrocarbons	56

4	Engine combustion	60
	4.1 Spark ignition engines	60
	4.1.1 Mixture formation	60
	4.1.2 Ignition	63
	4.1.3 The combustion process	65
	4.1.4 Abnormal combustion 4.15 Controlled autoignition	69 70
	4.15 Controlled autorginuon	70
	4.2 Diesei eligilies 4.2.1 Injection methods and systems	72
	4.2.2 Mixture formation	73 80
	4.2.3 Autoignition	81
	4.2.4 Combustion	83
	4.2.5 Homogeneous combustion	86
	4.3 Pressure trace analysis	88
	4.3.1 Determination of the heat release rate	88
	4.3.2 Loss distribution	92
	4.3.3 Comparison of various combustion processes	95
5	Phenomenological combustion models	98
	5.1 Diesel engine combustion	98
	5.1.1 Zero-dimensional heat release function	98
	5.1.2 Stationary gas jet	99
	5.1.3 Packet models	104
	5.1.4 Time scale models	111
	5.2 SI engine combustion	113
6	Pollutant formation	116
	6.1 Exhaust gas composition	116
	6.2 Carbon monoxide (CO)	117
	6.3 Unburned hydrocarbons (HC)	118
	6.3.1 Limited pollutant components	118
	6.3.2 Non-limited pollutant components	122
	6.4 Particulate matter emission in the diesel engine	127
	6.4.1 Introduction	127
	6.4.2 Polycyclic aromatic hydrocarbons (PAH)	128
	6.4.3 Soot development	129
	6.4.4 Particle emission modeling	131
	6.5 Nitrogen oxides	132
	6.5.1 Thermal NO	133
	0.3.2 Prompt NO 6.5.3 NO formed via N O	138
	654 Fuel nitrogen	140
		110

7 Calcula	tion of the real working process	141
7.1 Sin	gle-zone cylinder model	142
7.1.1	Fundamentals	142
7.1.2	Mechanical work	144
7.1.3	Determination of the mass flow through the valves / valve lift curves	144
7.1.4	Heat transfer in the cylinder	147
7.1.5	Heat transfer in the exhaust manifold	156
7.1.6	Wall temperature models	157
7.1.7	The heat release rate	160
7.1.8	Knocking combustion	174
7.1.9	Internal energy	178
7.2 The	two-zone cylinder model	187
7.2.1	Modeling the high pressure range according to Hohlbaum	187
7.2.2	Modeling the high pressure phase according to Heider	190
7.2.3	Results of NOx calculation with two-zone models	193
7.2.4	Modeling the charge changing for a two-stroke engine	195
7.3 Mo	deling the gas path	197
7.3.1	Modeling peripheral components	197
7.3.2	Model building	199
7.3.3	Integration methods	200
7.4 Gas	dvnamics	201
7.4.1	Basic equations of one-dimensional gas dynamics	201
7.4.2	Numerical solution methods	205
7.4.3	Boundary conditions	208
7.5 Cha	urging	214
7.5.1	Flow compressor	214
7.5.2	The positive displacement charger	224
7.5.3	The flow turbine	225
7.5.4	Turbochargers	236
7.5.5	Charge air cooling	239
8 Total p	rocess analysis	245
8.1 Ger	neral introduction	245
8.2 The	rmal engine behavior	245
8.2.1	Basics	245
8.2.2	Modeling the pipeline system	246
8.2.3	The cooling cycle	248
8.2.4	The oil cycle	251
8.2.5	Physical properties of oil and coolant	256
8.3 Eng	ine friction	257
8.3.1	Friction method for the warm engine	257
8.3.2	Friction method for the warm-up	258

 8.4.1 PID controller 8.4.2 Load control 8.4.3 Combustion control 8.4.4 Control of exhaust gas recirculation 8.4.5 Charger aggregate control 8.4.6 The driver controller 8.5 Representing the engine as a characteristic map 8.5.1 Procedure and boundary conditions 8.5.2 Reconstruction of the torque band 8.6 Stationary simulation results (parameter variations) 8.6.1 Load variation in the throttled SI engine 8.6.2 Influence of ignition and combustion duration 8.6.3 Variation of the compression ratio, load, and peak pressure in the large diesel engine 8.6.4 Investigations of fully variable valve trains 8.6.5 Variation of the intake pipe length and the valve control times (SI engine, full load) 8.6.6 Exhaust gas recirculation in the turbocharged diesel engine of a passenger car 8.6.7 Engine bypass in the large diesel engine 8.7.1 Power switching in the generator engine 8.7.2 Acceleration of a commercial vehicle from 0 to 80 km/h 8.7.3 Turbocharger intervention possibilities 8.7.4 Part load in the ECE test cycle 8.7.5 The warm-up phase in the ECE test cycle 8.7.6 Full load acceleration in the turbocharged SI engine 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.3 Simulation of injection processes 9.2.3 Simulation of processes 9.2.4 Solution approaches 	261
 8.4.2 Load control 8.4.3 Combustion control 8.4.4 Control of exhaust gas recirculation 8.4.5 Charger aggregate control 8.4.6 The driver controller 8.5 Representing the engine as a characteristic map 8.5.1 Procedure and boundary conditions 8.5.2 Reconstruction of the torque band 8.6 Stationary simulation results (parameter variations) 8.6.1 Load variation in the throttled SI engine 8.6.2 Influence of ignition and combustion duration 8.6.3 Variation of the compression ratio, load, and peak pressure in the large diesel engine 8.6.4 Investigations of fully variable valve trains 8.6.5 Variation of the intake pipe length and the valve control times (SI engine, full load) 8.6.6 Exhaust gas recirculation in the turbocharged diesel engine of a passenger car 8.6.7 Engine bypass in the large diesel engine 8.7.1 Power switching in the generator engine 8.7.2 Acceleration of a commercial vehicle from 0 to 80 km/h 8.7.3 Turbocharger intervention possibilities 8.7.4 Part load in the ECE test cycle 8.7.5 The warm-up phase in the ECE test cycle 8.7.6 Full load acceleration in the turbocharged SI engine 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.3 Simulation of processes 9.2.4 Solution approaches 	261
 8.4.3 Combustion control 8.4.4 Control of exhaust gas recirculation 8.4.5 Charger aggregate control 8.4.6 The driver controller 8.5 Representing the engine as a characteristic map 8.5.1 Procedure and boundary conditions 8.5.2 Reconstruction of the torque band 8.6 Stationary simulation results (parameter variations) 8.6.1 Load variation in the throttled SI engine 8.6.2 Influence of ignition and combustion duration 8.6.3 Variation of the compression ratio, load, and peak pressure in the large diesel engine 8.6.4 Investigations of fully variable valve trains 8.6.5 Variation of the intake pipe length and the valve control times (SI engine, full load) 8.6.6 Exhaust gas recirculation in the turbocharged diesel engine of a passenger car 8.6.7 Engine bypass in the large diesel engine 8.7.1 Power switching in the generator engine 8.7.2 Acceleration of a commercial vehicle from 0 to 80 km/h 8.7.3 Turbocharger intervention possibilities 8.7.4 Part load in the ECE test cycle 8.7.6 Full load acceleration in the turbocharged SI engine 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.2 Spray statistics 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 	261
 8.4.4 Control of exhaust gas recirculation 8.4.5 Charger aggregate control 8.4.6 The driver controller 8.5 Representing the engine as a characteristic map 8.5.1 Procedure and boundary conditions 8.5.2 Reconstruction of the torque band 8.6 Stationary simulation results (parameter variations) 8.6.1 Load variation in the throttled SI engine 8.6.2 Influence of ignition and combustion duration 8.6.3 Variation of the compression ratio, load, and peak pressure in the large diesel engine 8.6.4 Investigations of fully variable valve trains 8.6.5 Variation of the intake pipe length and the valve control times (SI engine, full load) 8.6.6 Exhaust gas recirculation in the turbocharged diesel engine of a passenger car 8.6.7 Transient simulation results 8.7.1 Power switching in the generator engine 8.7.2 Acceleration of a commercial vehicle from 0 to 80 km/h 8.7.3 Turbocharger intervention possibilities 8.7.4 Part load in the ECE test cycle 8.7.6 Full load acceleration in the turbocharged SI engine 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.2 Spray statistics 9.2.3 Problems in the standard spray model 9.4 Solution approaches 	262
 8.4.5 Charger aggregate control 8.4.6 The driver controller 8.4.6 The driver controller 8.5.1 Procedure and boundary conditions 8.5.2 Reconstruction of the torque band 8.6 Stationary simulation results (parameter variations) 8.6.1 Load variation in the throttled SI engine 8.6.2 Influence of ignition and combustion duration 8.6.3 Variation of the compression ratio, load, and peak pressure in the large diesel engine 8.6.4 Investigations of fully variable valve trains 8.6.5 Variation of the intake pipe length and the valve control times (SI engine, full load) 8.6.6 Exhaust gas recirculation in the turbocharged diesel engine of a passenger car 8.6.7 Engine bypass in the large diesel engine 8.7.1 Power switching in the generator engine 8.7.2 Acceleration of a commercial vehicle from 0 to 80 km/h 8.7.3 Turbocharger intervention possibilities 8.7.4 Part load in the ECE test cycle 8.7.5 The warm-up phase in the ECE test cycle 8.7.6 Full load acceleration in the turbocharged SI engine 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 	262
 8.4.6 The driver controller 8.5 Representing the engine as a characteristic map 8.5.1 Procedure and boundary conditions 8.5.2 Reconstruction of the torque band 8.6 Stationary simulation results (parameter variations) 8.6.1 Load variation in the throttled SI engine 8.6.2 Influence of ignition and combustion duration 8.6.3 Variation of the compression ratio, load, and peak pressure in the large diesel engine 8.6.4 Investigations of fully variable valve trains 8.6.5 Variation of the intake pipe length and the valve control times (SI engine, full load) 8.6.6 Exhaust gas recirculation in the turbocharged diesel engine of a passenger car 8.6.7 Engine bypass in the large diesel engine 8.7.1 Power switching in the generator engine 8.7.2 Acceleration of a commercial vehicle from 0 to 80 km/h 8.7.3 Turbocharger intervention possibilities 8.7.4 Part load in the ECE test cycle 8.7.6 Full load acceleration in the turbocharged SI engine 9 Fluid mechanical simulation 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.2 Spray statistics 9.3 Simulation of combustion 9.3 Gueran procedure 	264
 8.5 Representing the engine as a characteristic map 8.5.1 Procedure and boundary conditions 8.5.2 Reconstruction of the torque band 8.6 Stationary simulation results (parameter variations) 8.6.1 Load variation in the throttled SI engine 8.6.2 Influence of ignition and combustion duration 8.6.3 Variation of the compression ratio, load, and peak pressure in the large diesel engine 8.6.4 Investigations of fully variable valve trains 8.6.5 Variation of the intake pipe length and the valve control times (SI engine, full load) 8.6.6 Exhaust gas recirculation in the turbocharged diesel engine of a passenger car 8.6.7 Engine bypass in the large diesel engine 8.7.1 Power switching in the generator engine 8.7.2 Acceleration of a commercial vehicle from 0 to 80 km/h 8.7.3 Turbocharger intervention possibilities 8.7.4 Part load in the ECE test cycle 8.7.6 Full load acceleration in the turbocharged SI engine 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 	266
 8.5.1 Procedure and boundary conditions 8.5.2 Reconstruction of the torque band 8.6 Stationary simulation results (parameter variations) 8.6.1 Load variation in the throttled SI engine 8.6.2 Influence of ignition and combustion duration 8.6.3 Variation of the compression ratio, load, and peak pressure in the large diesel engine 8.6.4 Investigations of fully variable valve trains 8.6.5 Variation of the intake pipe length and the valve control times (SI engine, full load) 8.6.6 Exhaust gas recirculation in the turbocharged diesel engine of a passenger car 8.6.7 Engine bypass in the large diesel engine 8.7 Transient simulation results 8.7.1 Power switching in the generator engine 8.7.2 Acceleration of a commercial vehicle from 0 to 80 km/h 8.7.3 Turbocharger intervention possibilities 8.7.4 Part load in the ECE test cycle 8.7.6 Full load acceleration in the turbocharged SI engine 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 	267
 8.5.2 Reconstruction of the torque band 8.6 Stationary simulation results (parameter variations) 8.6.1 Load variation in the throttled SI engine 8.6.2 Influence of ignition and combustion duration 8.6.3 Variation of the compression ratio, load, and peak pressure in the large diesel engine 8.6.4 Investigations of fully variable valve trains 8.6.5 Variation of the intake pipe length and the valve control times (SI engine, full load) 8.6.6 Exhaust gas recirculation in the turbocharged diesel engine of a passenger car 8.6.7 Engine bypass in the large diesel engine 8.7.1 Power switching in the generator engine 8.7.2 Acceleration of a commercial vehicle from 0 to 80 km/h 8.7.3 Turbocharger intervention possibilities 8.7.4 Part load in the ECE test cycle 8.7.5 The warm-up phase in the ECE test cycle 8.7.6 Full load acceleration in the turbocharged SI engine 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.2 Spray statistics 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 	267
 8.6 Stationary simulation results (parameter variations) 8.6.1 Load variation in the throttled SI engine 8.6.2 Influence of ignition and combustion duration 8.6.3 Variation of the compression ratio, load, and peak pressure in the large diesel engine 8.6.4 Investigations of fully variable valve trains 8.6.5 Variation of the intake pipe length and the valve control times (SI engine, full load) 8.6.6 Exhaust gas recirculation in the turbocharged diesel engine of a passenger car 8.6.7 Engine bypass in the large diesel engine 8.7.1 Power switching in the generator engine 8.7.2 Acceleration of a commercial vehicle from 0 to 80 km/h 8.7.3 Turbocharger intervention possibilities 8.7.4 Part load in the ECE test cycle 8.7.5 The warm-up phase in the ECE test cycle 8.7.6 Full load acceleration in the turbocharged SI engine 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.2 Spray statistics 9.3 Problems in the standard spray model 9.4 Solution approaches 	269
 8.6.1 Load variation in the throttled SI engine 8.6.2 Influence of ignition and combustion duration 8.6.3 Variation of the compression ratio, load, and peak pressure in the large diesel engine 8.6.4 Investigations of fully variable valve trains 8.6.5 Variation of the intake pipe length and the valve control times (SI engine, full load) 8.6.6 Exhaust gas recirculation in the turbocharged diesel engine of a passenger car 8.6.7 Engine bypass in the large diesel engine 8.7 Transient simulation results 8.7.1 Power switching in the generator engine 8.7.2 Acceleration of a commercial vehicle from 0 to 80 km/h 8.7.3 Turbocharger intervention possibilities 8.7.4 Part load in the ECE test cycle 8.7.5 The warm-up phase in the ECE test cycle 8.7.6 Full load acceleration in the turbocharged SI engine 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.2 Spray statistics 9.2 Spray statistics 9.3 Simulation of combustion 9.3 L General procedure 	272
 8.6.2 Influence of ignition and combustion duration 8.6.3 Variation of the compression ratio, load, and peak pressure in the large diesel engine 8.6.4 Investigations of fully variable valve trains 8.6.5 Variation of the intake pipe length and the valve control times (SI engine, full load) 8.6.6 Exhaust gas recirculation in the turbocharged diesel engine of a passenger car 8.6.7 Engine bypass in the large diesel engine 8.7 Transient simulation results 8.7.1 Power switching in the generator engine 8.7.2 Acceleration of a commercial vehicle from 0 to 80 km/h 8.7.3 Turbocharger intervention possibilities 8.7.4 Part load in the ECE test cycle 8.7.5 The warm-up phase in the ECE test cycle 8.7.6 Full load acceleration in the turbocharged SI engine 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.2 Spray statistics 9.2 Spray statistics 9.3 Simulation of combustion 9.3 L General procedure 	273
 8.6.3 Variation of the compression ratio, load, and peak pressure in the large diesel engine 8.6.4 Investigations of fully variable valve trains 8.6.5 Variation of the intake pipe length and the valve control times (SI engine, full load) 8.6.6 Exhaust gas recirculation in the turbocharged diesel engine of a passenger car 8.6.7 Engine bypass in the large diesel engine 8.7 Transient simulation results 8.7.1 Power switching in the generator engine 8.7.2 Acceleration of a commercial vehicle from 0 to 80 km/h 8.7.3 Turbocharger intervention possibilities 8.7.4 Part load in the ECE test cycle 8.7.6 Full load acceleration in the turbocharged SI engine 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 9.3 L General procedure 	274
diesel engine 8.6.4 Investigations of fully variable valve trains 8.6.5 Variation of the intake pipe length and the valve control times (SI engine, full load) 8.6.6 Exhaust gas recirculation in the turbocharged diesel engine of a passenger car 8.6.7 Engine bypass in the large diesel engine 8.7 Transient simulation results 8.7.1 Power switching in the generator engine 8.7.2 Acceleration of a commercial vehicle from 0 to 80 km/h 8.7.3 Turbocharger intervention possibilities 8.7.4 Part load in the ECE test cycle 8.7.5 The warm-up phase in the ECE test cycle 8.7.6 Full load acceleration in the turbocharged SI engine 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.2 Spray statistics 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 9.3 I General procedure	
 8.6.4 Investigations of fully variable valve trains 8.6.5 Variation of the intake pipe length and the valve control times (SI engine, full load) 8.6.6 Exhaust gas recirculation in the turbocharged diesel engine of a passenger car 8.6.7 Engine bypass in the large diesel engine 8.7 Transient simulation results 8.7.1 Power switching in the generator engine 8.7.2 Acceleration of a commercial vehicle from 0 to 80 km/h 8.7.3 Turbocharger intervention possibilities 8.7.4 Part load in the ECE test cycle 8.7.5 The warm-up phase in the ECE test cycle 8.7.6 Full load acceleration in the turbocharged SI engine 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.2 Spray statistics 9.3 Problems in the standard spray model 9.4 Solution approaches 	276
 8.6.5 Variation of the intake pipe length and the valve control times (SI engine, full load) 8.6.6 Exhaust gas recirculation in the turbocharged diesel engine of a passenger car 8.6.7 Engine bypass in the large diesel engine 8.7 Transient simulation results 8.7.1 Power switching in the generator engine 8.7.2 Acceleration of a commercial vehicle from 0 to 80 km/h 8.7.3 Turbocharger intervention possibilities 8.7.4 Part load in the ECE test cycle 8.7.5 The warm-up phase in the ECE test cycle 8.7.6 Full load acceleration in the turbocharged SI engine 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.2 Spray statistics 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 	277
 (SI engine, full load) 8.6.6 Exhaust gas recirculation in the turbocharged diesel engine of a passenger car 8.6.7 Engine bypass in the large diesel engine 8.7 Transient simulation results 8.7.1 Power switching in the generator engine 8.7.2 Acceleration of a commercial vehicle from 0 to 80 km/h 8.7.3 Turbocharger intervention possibilities 8.7.4 Part load in the ECE test cycle 8.7.5 The warm-up phase in the ECE test cycle 8.7.6 Full load acceleration in the turbocharged SI engine 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 9.3 Simulation of combustion 9.3 I General procedure 	
 8.6.6 Exhaust gas recirculation in the turbocharged diesel engine of a passenger car 8.6.7 Engine bypass in the large diesel engine 8.7 Transient simulation results 8.7.1 Power switching in the generator engine 8.7.2 Acceleration of a commercial vehicle from 0 to 80 km/h 8.7.3 Turbocharger intervention possibilities 8.7.4 Part load in the ECE test cycle 8.7.5 The warm-up phase in the ECE test cycle 8.7.6 Full load acceleration in the turbocharged SI engine 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.2 Spray statistics 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 	279
 passenger car 8.6.7 Engine bypass in the large diesel engine 8.7 Transient simulation results 8.7.1 Power switching in the generator engine 8.7.2 Acceleration of a commercial vehicle from 0 to 80 km/h 8.7.3 Turbocharger intervention possibilities 8.7.4 Part load in the ECE test cycle 8.7.5 The warm-up phase in the ECE test cycle 8.7.6 Full load acceleration in the turbocharged SI engine 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.2 Spray statistics 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 	
 8.6.7 Engine bypass in the large diesel engine 8.7 Transient simulation results 8.7.1 Power switching in the generator engine 8.7.2 Acceleration of a commercial vehicle from 0 to 80 km/h 8.7.3 Turbocharger intervention possibilities 8.7.4 Part load in the ECE test cycle 8.7.5 The warm-up phase in the ECE test cycle 8.7.6 Full load acceleration in the turbocharged SI engine 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 9.3 Simulation of combustion 9.3 L General procedure 	279
 8.7 Transient simulation results 8.7.1 Power switching in the generator engine 8.7.2 Acceleration of a commercial vehicle from 0 to 80 km/h 8.7.3 Turbocharger intervention possibilities 8.7.4 Part load in the ECE test cycle 8.7.5 The warm-up phase in the ECE test cycle 8.7.6 Full load acceleration in the turbocharged SI engine 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.2 Spray statistics 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 	283
 8.7.1 Power switching in the generator engine 8.7.2 Acceleration of a commercial vehicle from 0 to 80 km/h 8.7.3 Turbocharger intervention possibilities 8.7.4 Part load in the ECE test cycle 8.7.5 The warm-up phase in the ECE test cycle 8.7.6 Full load acceleration in the turbocharged SI engine 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 9.3 Simulation of combustion 9.3 I General procedure 	285
 8.7.2 Acceleration of a commercial vehicle from 0 to 80 km/h 8.7.3 Turbocharger intervention possibilities 8.7.4 Part load in the ECE test cycle 8.7.5 The warm-up phase in the ECE test cycle 8.7.6 Full load acceleration in the turbocharged SI engine 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 9.3 Simulation of combustion 9.3 L General procedure 	285
 8.7.3 Turbocharger intervention possibilities 8.7.4 Part load in the ECE test cycle 8.7.5 The warm-up phase in the ECE test cycle 8.7.6 Full load acceleration in the turbocharged SI engine 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.2 Spray statistics 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 9.3 Simulation of combustion 9.3 1 General procedure 	287
 8.7.4 Part load in the ECE test cycle 8.7.5 The warm-up phase in the ECE test cycle 8.7.6 Full load acceleration in the turbocharged SI engine 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.2 Spray statistics 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 9.3 Simulation of combustion 9.3.1 General procedure 	289
 8.7.5 The warm-up phase in the ECE test cycle 8.7.6 Full load acceleration in the turbocharged SI engine 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.2 Spray statistics 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 9.3 Simulation of combustion 9.3.1 General procedure 	290
 8.7.6 Full load acceleration in the turbocharged SI engine 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.2 Spray statistics 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 9.3 Simulation of combustion 9.3.1 General procedure 	292
 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.2 Spray statistics 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 9.3 Simulation of combustion 9.3.1 General procedure 	293
 9 Fluid mechanical simulation 9.1 Three-dimensional flow fields 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.2 Spray statistics 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 9.3 Simulation of combustion 9.3.1 General procedure 	207
 9.1 Three-dimensional flow fields 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.2 Spray statistics 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 9.3 Simulation of combustion 9.3.1 General procedure 	297
 9.1.1 Basic fluid mechanical equations 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.2 Spray statistics 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 9.3 Simulation of combustion 9.3.1 General procedure 	297
 9.1.2 Turbulence and turbulence models 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.2 Spray statistics 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 9.3 Simulation of combustion 9.3.1 General procedure 	297
 9.1.3 Numerics 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.2 Spray statistics 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 9.3 Simulation of combustion 9.3.1 General procedure 	303
 9.1.4 Computational meshes 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.2 Spray statistics 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 9.3 Simulation of combustion 9.3.1 General procedure 	313
 9.1.5 Examples 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.2 Spray statistics 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 9.3 Simulation of combustion 9.3.1 General procedure 	320
 9.2 Simulation of injection processes 9.2.1 Single-droplet processes 9.2.2 Spray statistics 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 9.3 Simulation of combustion 9.3.1 General procedure 	321
 9.2.1 Single-droplet processes 9.2.2 Spray statistics 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 9.3 Simulation of combustion 9.3.1 General procedure 	326
 9.2.2 Spray statistics 9.2.3 Problems in the standard spray model 9.2.4 Solution approaches 9.3 Simulation of combustion 9.3.1 General procedure 	327
9.2.3 Problems in the standard spray model9.2.4 Solution approaches9.3 Simulation of combustion9.3.1 General procedure	331
9.2.4 Solution approaches9.3 Simulation of combustion9.3.1 General procedure	343
9.3 Simulation of combustion 9.3.1 General procedure	347
9.3.1 General procedure	354
	354
9.3.2 Diesel combustion	357

9.3.3 9.3.4	The homogeneous SI engine (premixture combustion) The SI engine with stratified charge (partially premixed flames)	365 380
Literature		382
Index		391

XI

Abbreviations

50 mfb	50 % mass fraction burned
bb	blow-by
BDC	bottom dead center
BTDC	before top dead center
CA	crank angle
CAC	charge air cooler
CAI	controlled auto-ignition
сс	combustion chamber
CD	combustion duration
CCBDC	charge change bottom dead center
CCTDC	charge change top dead center
CFD	computational fluid dynamics
DI	direct injection
DISI	direct injection spark ignition
DS	delivery start
dv	dump valve
eb	engine block
EGR	exhaust gas recirculation
EV	exhaust valve
EVC	exhaust valve close
EVO	exhaust valve open
EIVC	early intake valve close
FEM	finite element method
HCCI	homogeneous charge compression ignition
hrr	heat release rate
ID	injection duration
IGD	ignition delay
IND	injection delay
ip	injection pump
IP	injection process
IT	ignition time
ITDC	ignition top dead center
IV	intake valve
IVC	intake valve close
IVO	intake valve open
LES	large-eddy-simulation
LIVC	late intake valve close
mcp	mass conversion point
mfb	mass fraction burned
nn	neuronal network
oc	oil cooler
OHC-equ.	oxygen-hydrogen-carbon-equilibrium
op	oil pan

PAH	polycyclic aromatic hydrocarbons
PDF	probability density function
rg	residual gas
SOC	start of combustion
SOI	start of injection
TC	turbocharging, turbocharger
TDC	top dead center
tv	throttle valve
VTG	variable turbine geometry

Symbols

A	surface [m ²]
	kinematics of the Bolzmann equation variable α
	parameter Zacharias
	temperature difference Heider [K]
A^{*}	temperature difference Heider [K]
A _{id}	ignition model parameter
Anrem	combustion model parameter
a	Vibe heat release rate constant
	sonic speed [m / s]
	thermal diffusivity [m ² / s]
	gradient "crooked coordinates"
	parameter knocking criterion
	reference opening path thermostat
В	function Heider
B_0, B_1	breakup model constants
b	breadth [m]
	parameter knocking criterion
b_{e}	specific fuel consumption [g/kWh]
Ċ	function Lax Wendroff
	constant
	heat transfer Woschni constant
C_1	Woschni constant
C_2	Woschni constant [m / (s K)]
C_3	Vogel constant
	constant of the particle path
C_4	constant of the particle path
C_A	contraction coefficient
C_{gl}	Heider constant
C_v°	velocity coefficient
C_w	drag coefficient
CD	combustion duration [Grad]
Cou	Courant number

с	carbon component [kg / kg fuel]
	spring rate [N / m]
	progress variable
	velocity [m / s]
	constant
	lenoth [m]
	narameter knocking criterion
	specific heat [I / (kg K)]
C	species mass fraction of the species no i
$c_{(i)}$	stock concentration
<i>Ci</i>	constant friction method for
c_f	modium niston valority [m / s]
<i>C</i> _{<i>m</i>}	nicton velocity [m / s]
c_p	piston velocity [III / S] specific heat at constant pressure [$I / (leg K)$]
1	specific near at constant pressure [J / (kg K)]
c_u / c_m	swiri number
	inixitute fraction variance transport equation model constants
$c_{\varepsilon_1}, c_{\varepsilon_2}, c_{\varepsilon_3}$	turbulance model constant
c_{μ}	specific heat at constant volume $\begin{bmatrix} I / (l \alpha K) \end{bmatrix}$
c_v	diffusion constant
D	diameter [m]
	utalliciti [III]
	cylinder diameter [m]
D _n	inverse relaxation time scale of a drop in turbulent flow $[s^{-1}]$
D_R	inverse relaxation time scale of a drop in turbulent now [s]
$\frac{0}{2}$	partial differential
dt	
d	wall thickness [m]
	diameter [m]
	damping factor [kg / s]
d_f	fan diameter [m]
d_m	medium turbine diameter [m]
E	energy [J]
E	energy flow [J/s]
E_A	activation energy
E_{id}	ignition energy [K]
E _{kin}	kinetic spray energy [J]
EB	energy balance
EGR	exhaust gas recirculation [%]
e	eccentricity, crossing [m]
F	Lax Wendroff function
	The single second secon
F	
r _g	gas Iorce [N]
FA	parameter Zacharias

f	general function
	force density $[N/m^3]$
	distribution function
fro	mass fraction of the residual gas
fmep	mean friction pressure [bar]
G	formal field variable, which zeros localize the flame front position
	free enthalpy [J]
	function Lax Wendroff
	Gibbs function [J]
g	specific free enthalpy [J / kg]
\tilde{H}	enthalpy [J]
	heating value [J / kg]
h	hydrogen component [kg / kg Kst]
	specific enthalpy [J / kg]
	stroke [m]
h_1	parameter polygon hyperbolic heat release rate
h_2	parameter polygon hyperbolic heat release rate
h_3	parameter polygon hyperbolic heat release rate
Ī	impulse $\left[(\text{kg m}) / \text{s} \right]$
	current [A]
I_K	knocking initiating critical pre reaction level
ID	injection duration [Grad]
ifa	fan ratio
imep	indicated mean effective pressure [N / m ²]
iz	number of line sections
L	angular momentum [N m s]
	length scale [m]
Κ	combustion chamber dependent constant (Franzke)
K _d	differential coefficient
K _i	integral coefficient
K_p	proportional coefficient
1	equilibrium constant
K _b	bearing friction constant
K_{η}	constant [m ³]
K_{ρ}	factor gap thickness
k '	constant
	turbulent kinetic energy $[m^2 / s^2]$
	heat transfer coefficient [$W / (m^2 K)$]
	index
k _c	container stiffness [N / m ⁵]
k_{f}	velocity coefficient for the forward reaction
-	pipe friction coefficient [m / s ²]
k _r	velocity coefficient for the reverse reaction
kp	knocking probability
L	swirl length [m]