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Foreword

It is our pleasure to present this volume as part of the book series on the Proceedings of the XII
International IAEG Congress, Torino 2014.

For the 50th anniversary, the Congress collected contributions relevant to all themes where
the IAEG members were involved, both in the research field and in professional activities.

Each volume is related to a specific topic, including:

1. Climate Change and Engineering Geology;
2. Landslide Processes;
3. River Basins, Reservoir Sedimentation and Water Resources;
4. Marine and Coastal Processes;
5. Urban Geology, Sustainable Planning and Landscape Exploitation;
6. Applied Geology for Major Engineering Projects;
7. Education, Professional Ethics and Public Recognition of Engineering Geology;
8. Preservation of Cultural Heritage.

The book series aims at constituting a milestone for our association, and a bridge for the
development and challenges of Engineering Geology towards the future.

This ambition stimulated numerous conveners, who committed themselves to collect a
large number of contributions from all parts of the world, and to select the best papers through
two review stages. To highlight the work done by the conveners, the table of contents of the
volumes maintains the structure of the sessions of the Congress.

The lectures delivered by prominent scientists, as well as the contributions of authors, have
explored several questions ranging from scientific to economic aspects, from professional
applications to ethical issues, which all have a possible impact on society and territory.
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This volume testifies the evolution of engineering geology during the last 50 years, and
summarizes the recent results. We hope that you will be able to find stimulating contributions,
which will support your research or professional activities.

Carlos DelgadoGiorgio Lollino
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Preface

Landslides and slope stability are one of the leading professional and research fields for
engineering geologists. They have been addressed in the IAEG conferences and meetings
since the very beginning of the Association. More than 400 contributions related to landslide
processes have been submitted to this 12th IAEG congress. They constitute a representative
sample of the developments achieved during the last few years and of the challenges our
geoscientific community is faced with.

Landslide Mechanisms

Landslides and catastrophic rock and soil failures are due to a variety of mechanisms, some of
which are still insufficiently known. This may explain why after more than 35 years, the well-
known classification of landslide processes proposed by Varnes in 1978 is still being revisited
and updated.

Several sessions in the Congress are devoted to the mechanisms affecting complex geo-
logical formations and large slope failures. One of them is focused on the so-called hard soils
and soft rocks. Overconsolidated clays and argillaceous soft rocks cause frequent problems in
civil works regarding the stability and degradation on exposed surfaces. These materials
exhibit a quasi-brittle behavior. Fragility is often associated with loss of cementation of the
material and consequently a drop of the shear strength which favors strain localization phe-
nomena and development of progressive failure. The evolution of the movements may include
catastrophic acceleration.

Significant research efforts have also been devoted to gain better understanding of the
evolution of large slope deformations and to the prediction of their potential to catastrophic
failures. Some slope deformations are slow and ductile, moving in a continuous or intermittent
manner, others are brittle and after a certain deformation, or as a result of sudden loading (e.g.,
during an earthquake), they may accelerate, fail, and attain extremely rapid velocities. The
failure of large rock masses may involve in-situ rock blocks bounded by a combination of
nonsystematic joints and intact rock bridges. The instability process may lead to loss of
cohesion, fragmentation of the rock mass, and very rapid flow such as rock avalanching
(sturzstroms).

Techniques for Landslide Characterization and Monitoring

Different instrumentation systems have been developed to monitor landslide behavior, and
they are used in many locations around the world. They are often employed in conjunction
with surface mapping and subsurface investigations for a detailed characterization of slopes
and landslides. Landslide monitoring has several purposes: it provides information about the
geometry of the failure, the movement pattern as well as data for the calibration of analytical
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and numerical models. The interpretation of the temporal evolution of the different variables is
the basis of early warning systems.

The automation of piezometers, inclinometers, extensometers, and distance meters has
made possible the monitoring of virtually continuous motion and pore pressure changes. The
interpretation of the data recorded has allowed the establishment of consistent relationships
between instability triggers and slope deformations. Furthermore, it has highlighted the
importance of elements such as cracks and macropores in the hydrological response of
landslides.

Many landslides show spatially complex movements. Ground-based equipment such as
extensometers or inclinometers are situated at specific locations on a landslide. Such moni-
toring devices are often costly to install, require access to the site while they yield spatially
discontinuous data. The interpretation of the monitoring results requires a proper under-
standing of the landslide’s geomorphological context, and of its different units. Remote
sensing techniques are being now increasingly used in landslide investigations, because of
their ability to survey large areas and acquire data with high accuracy and high spatial
resolution without the accessibility constraints of other equipment and their performance in
adverse weather conditions. Two main remote sensing techniques have been intensively tested
in the recent years: the terrestrial and aerial laser scanner (LiDAR) and radar interferometry
(InSAR), both satellite or ground-based. The laser scanner has multiple applications in slope
stability, particularly in rock slopes. It generates high-resolution point clouds of the topo-
graphic surface from which one can derive detailed DEMs with highlighted geomorphological
features; this can improve the quality of landslide inventories. Detailed DEMs can be used to
define discontinuity surfaces and their attributes (i.e., orientation, persistence, spacing) and the
deformation pattern of the monitored surfaces allowing the characterization of the instability
process. Multitemporal DEMs analysis can also be used to detect morphological and volu-
metric changes over time.

Advanced InSAR techniques have become a powerful tool for spatio-temporal monitoring
ground movements such as subsidence, surface displacements due to landslides or tectonic
activity. An additional advantage of InSAR is the existence of a historical database of satellite
SAR images (since 1992), enabling retrospective studies.

Other satellite-based sensors are currently available providing information with different
spatial, temporal, and spectral resolution. A large number of crucial input data are obtained
regarding soil type, vegetation, or land cover; these can be converted into maps through spatial
interpolation using environmental correlation with landscape attributes (e.g., geostatistical
interpolation methods such as cokriging) that can be easily integrated into GIS for landslide
susceptibility and hazard analyses.

Landslide Hazard and Risk Assessment

Risk analysis involves the location, characterization of the landslide (classification, size,
velocity, mechanism), and assessment of its travel distance and frequency, which is the hazard
analysis; and the consequence analysis that takes into account the presence of the elements at
risk, their temporal spatial probability and vulnerability. Risk analysis includes both hazard
and consequences analyses. In risk assessment, the results of both analyses are evaluated
against value judgments and risk acceptance criteria.

There have been significant advances in regional and local mapping of landslide hazard.
The contributions presented to this congress nicely show the recent achievements as well as
the shifting of the researchers’ interest from landslide susceptibility to landslide hazard
assessment and mapping. Furthermore, a parallel evolution has taken place from qualitative to
quantitative approaches. The latter have several advantages as they offer more objectivity in
the assessment; eliminate misinterpretations and the use of ambiguous terms; yield
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reproducible and consistent results; provide a direct input to the cost/benefit analyses. Now-
adays, there exist well-founded procedures for the quantitative analysis.

The methods for preparing hazard maps have evolved from the heuristic approaches, to the
statistical analyses and data driven methods, and to the deterministic analyses. The capability
of the latter has expanded from the stability of individual landslides to spatially distributed
models that calculate likelihood of rupture in combination with the return period of the triggers
(rain and/or seismicity). The main drawback of these models is that they often oversimplify the
geological and geomechanical variables and that should be based on high quality collected
data.

The reliability of the hazard maps has improved thanks to high-resolution DEM obtained
with remote sensing techniques and the development of data capture techniques. Several
researchers have shown that higher resolution DEM on one hand improves significantly the
results of slope stability and susceptibility models and on the other hand reduces the errors
associated to trajectographic analysis or landslide runout simulations.

The spatial distribution of the hazard may be challenging for long runout landslides for
which the probability of failure at the source area may differ significantly from the probability
of the landslide reaching a specific area. In this case, calculation of hazard must take into
account that: (a) different landslide types may occur with different time frames; (b) a target
area may be potentially affected by landslides originating from different source areas; (c) the
frequency observed at any target location or section may change with the distance to the
landslide source. The practical application of the landslide hazard assessment therefore
requires a multiple approach which should take into account the different failure mechanisms,
each with different characteristics and causal factors, size, and spatio-temporal probability.

Landslide Prevention and Management

Risk management identifies the measures that may be taken to avoid damages to the society, if
required. Different strategies can be considered and they may be synthesized as: risk accep-
tance, hazard avoidance, hazard reduction, and risk mitigation. Each strategy implements
specific measures aiming at either modifying the slope conditions to reduce instability or
restrict its development and damaging capability (active measures), or at avoiding the harmful
effects of the landslide without interfering with its occurrence (passive measures).

Landslide mitigation measures may include structural measures when they involve any kind
of engineering construction or intensive earth work. Stabilization and protection methods are
often expensive and may cause irreversible impacts on the mountain ecosystem. However,
structural measures cannot always guarantee full protection; and they require careful engi-
neering design, and appropriate maintenance. Among all the options, the avoidance of land-
slide-threatened areas is the best alternative, and land use planning is a fundamental tool in
promoting less expensive and sustainable development. However, the landslide prevention
measures, and specifically the implementation of alert systems, have to be considered when
the population or infrastructures are directly threatened.

The risk from landslide activity ought to be reducible by implementing early warning
systems (EWS). An EWS does not modify the hazard, but does contribute to a reduction in the
landslides consequences, in particular the loss of lives and thus the risk. It requires appropriate
monitoring, definition of threshold values, short-term prediction of behavior, and then taking
action to minimize risk when hazardous events are expected. The scientific and engineering
community is knowledgeable about what causes landslides and what reactivates them, how-
ever predicting short-term evolution of a slope or a change in landslide activity is still sub-
jected to uncertainties and errors. Without accurate predictions of short-term behavior (based
on appropriate monitoring), made without false alarms and with sufficient advance warning to
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enable the community at risk to take appropriate action, warning systems cannot be relied
upon.

EWS are installed with the aim of making accurate predictions of the behavior of land-
slides. While some systems operate with triggering thresholds such as the recorded rainfall,
others are based on the analysis of the deformation trend and for their interpretation adequate
knowledge of material rheology is required. The capturing and interpretation of small-scale
prefailure displacements is a fundamental task for landslide prevention. Researchers have
shown that different types of landslide may display different patterns of acceleration before
failure, and thus that monitoring very small-scale precursory movements offers the prospect of
forecasting a slope failure.

Finally, monitored data may be integrated within predictive tools which can involve an
empirical and semi-empirical interpretation of deformation field phenomena. This is done
using quantitative geological and geomorphological criteria or through the development and
implementation of more general and powerful computational models.
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