
Peer-to-Peer
with VB .NET

MATTHEW MACDONALD

1054C00FMCMP1.qxd 6/21/03 1:01 PM Page i

Peer-to-Peer with VB .NET
Copyright ©2003 by Matthew MacDonald

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN (pbk): 1-59059-105-4

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: Ron Miller

Editorial Board: Dan Appleman, Craig Berry, Gary Cornell, Tony Davis, Steven Rycroft, Julian
Skinner, Martin Streicher, Jim Sumser, Karen Watterson, Gavin Wright, John Zukowski

Assistant Publisher: Grace Wong

Project Manager: Beth Christmas

Copy Editor: Mark Nigara

Production Manager: Kari Brooks

Production Editor: Lori Bring

Compositor and Proofreader: Kinetic Publishing Services, LLC

Indexer: Kevin Broccoli

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, email
orders@springer.de, or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, email info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads
section.

1054C00FMCMP1.qxd 6/21/03 1:01 PM Page ii

CHAPTER 4

Building a Simple
Messenger

THE LAST CHAPTER CONDUCTED a whirlwind tour of Remoting, .NET’s object-based
model for communication between applications and across a network. Remoting
is a surprisingly flexible technology. By default, it’s tailored for traditional
enterprise computing, in which all the work is performed by a central group of
powerful server computers. But with a little more effort, you can use Remoting
as the basis for a peer-to-peer system that uses brokered communication. In this
chapter, we’ll explore one such example with an instant-messaging application
that relies on a central coordinator. Along the way, you’ll learn the advantages
and drawbacks involved with using Remoting in a peer-to-peer project.

Though Remoting is fairly easy to use, there can be a fair bit of subtlety
involved in using it correctly. In the example presented in this chapter, it’s easy
to ignore threading and concurrency problems, scalability considerations, and
security. These details are explored in more detail in the next chapter. In this
chapter, however, we’ll concentrate on creating a basic, reliable framework for
a messaging application based on Remoting.

Because the code is quite lengthy, it won’t be presented in this chapter all
at once. Instead, it’s broken down and dissected in detail throughout the chapter.
But before we consider a single line of code, we need to plan the overall architec-
ture of the system, which we’ll call Talk .NET.

Envisioning Talk .NET

Every Internet user is familiar with the basic model for an instant-messaging
application. Users log on to some sort of central authority, retrieve a list that
indicates who else is currently online, and exchange simple text messages. Some
messaging platforms include additional enhancements, such as file-transfer fea-
tures and group conversations that can include more than two parties.

All current-day instant-messaging applications rely on some sort of central
component that stores a list of who is currently online as well as the information
needed to contact them. Depending on the way the system is set up, peers may
retrieve this information and contact a chosen user directly, or they may route
all activity through the central coordinator. This chapter will consider both alter-
natives. We’ll use the central coordinator approach first.

71

1054C04CMP1.qxd 6/19/03 10:25 AM Page 71

Conceptually, there are two types of applications in Talk .NET: the single
server and the clients (or peers). Both applications must be divided into two
parts: a remotable MarshalByRefObject that’s exposed to the rest of the world
and used for communication over the network, and a private portion, which
manages the user interface and local user interaction. The server runs continu-
ously at a fixed, well-known location, while the clients are free to appear and
disappear on the network. Figure 4-1 diagrams these components.

Chapter 4

72

Figure 4-1. Components of the Talk .NET system

ClientProcess
(MarshalByRefObject)

ReceiveMessage()

ServerProcess
(MarshalByRefObject)

SendMessage()

Client Form Server Form
AddUser()

RemoveUser()

GetUsers()

TalkClient Application Domain TalkServer Application Domain

In order for the server to contact the client, the client must maintain an
open bidirectional channel. When a message arrives, the server notifies the
client. This notification can take place in several ways—it might use a callback or
event, or the server could just call a method on the client object or interface,
which is the approach taken in Talk .NET. Communication between these com-
ponents uses TCP channels and binary formatting in our example, although
these details are easy enough to change through the configuration files.

One of the most important aspects of the Talk .NET design is the fact that it
uses interfaces to manage the communication process. Interfaces help to stan-
dardize how any two objects interact in a distributed system. Talk .NET includes
two interfaces: ITalkServer, which defines the methods that a client can call on
the server, and ITalkClient, which defines the methods that the server (or another
client) can call on a client. Before actually writing the code for the Talk .NET
components, we’ll define the functionality by creating these interfaces.

1054C04CMP1.qxd 6/19/03 10:25 AM Page 72

Building a Simple Messenger

73

NOTE You can examine the full code for Talk .NET with the online samples
for this chapter. There are a total of four projects that make up this solution;
each is contained in a separate directory under the Talk .NET directory.

Defining the Interfaces

The first step in creating the system is to lock down the methods that will be
used for communication between the server and client components. These
interfaces must be created in a separate DLL assembly so that they can be used
by both the TalkClient and TalkServer applications. In the sample code, this class
library project is called TalkComponent. It contains the following code:

Public Interface ITalkServer

' These methods allow users to be registered and unregistered

' with the server.

Sub AddUser(ByVal [alias] As String, ByVal callback As ITalkClient)

Sub RemoveUser(ByVal [alias] As String)

' This returns a collection of user names that are currently logged in.

Function GetUsers() As ICollection

' The client calls this to send a message to the server.

Sub SendMessage(ByVal senderAlias As String, _

ByVal recipientAlias As String, ByVal message As String)

End Interface

Public Interface ITalkClient

' The server calls this to forward a message to the appropriate client.

Sub ReceiveMessage(ByVal message As String, ByVal senderAlias As String)

End Interface

' This delegate is primarily for convenience on some server-side code.

Public Delegate Sub ReceiveMessageCallback(ByVal message As String, _

ByVal senderAlias As String)

1054C04CMP1.qxd 6/19/03 10:25 AM Page 73

Chapter 4

74

TIP Remember to consider security when designing the interfaces. The inter-
faces define the methods that will be exposed publicly to other application
domains. Don’t include any methods that you don’t want a user at another
computer to be able to trigger.

ITalkServer defines the basic AddUser() and RemoveUser() methods for reg-
istering and unregistering users. It also provides a GetUsers() method that allows
peers to retrieve a complete list of online users, and a SendMessage() method
that actually routes a message from one peer to another. When SendMessage()
is invoked, the server calls the ReceiveMessage() method of the ITalkClient inter-
face to deliver the information to the appropriate peer.

Finally, the ReceiveMessageCallback delegate represents the method signa-
ture for the ITalkClient.ReceiveMessage() method. Strictly speaking, this detail
isn’t required. However, it makes it easier for the server to call the client asyn-
chronously, as you’ll see later.

One design decision has already been made in creating the interfaces. The
information that’s being transferred—the sender’s user name and the message
text—is represented by separate method parameters. Another approach would
be to create a custom serializable Message object, which would be added to the
TalkComponent project. Both approaches are perfectly reasonable.

Creating the TraceComponent

In Figure 4-1, both the client and the server are depicted as Windows applica-
tions. For the client, this design decision makes sense. For the server, however,
it’s less appropriate because it makes the design less flexible. For example, it
might make more sense to implement the server component as a Windows ser-
vice instead of a stand-alone application (as demonstrated in the next chapter).

A more loosely coupled option is possible. The server doesn’t need to include
any user-interface code. Instead, it can output messages to another source, such
as the Windows event log. The Talk .NET server will actually output diagnostic
messages using tracing code. These messages can then be dealt with in a variety
of ways. They can be captured and recorded in a file, sent to an event log, shown
in a console window, and so on. In the Talk .NET system, these messages will be
caught by a custom trace listener, which will then display the trace messages in
a Windows form. This approach is useful, flexible, and simple to code.

In .NET, any class can intercept, trace, and debug messages, provided it
inherits from TraceListener in the System.Diagnostics namespace. This abstract
class is the basis for DefaultTraceListener (which echoes messages to the Visual
Studio .NET debugger), TextWriterTraceListener (which sends messages to
a TextWriter or Stream, including a FileStream) and EventLogTraceListener
(which records messages in the Windows event log).

1054C04CMP1.qxd 6/19/03 10:25 AM Page 74

All custom trace listeners work by overriding the Write() and WriteLine()
methods. The entire process works like this:

1. The program calls a method such as Debug.Write() or Trace.Write().

2. The common language runtime (CLR) iterates through the current col-
lection of debug listeners (Debug.Listeners) or trace listeners
(Trace.Listeners).

3. Each time it finds a listener object, it calls its Write() or WriteLine()
method with the message.

The solution used in this example creates a generic listener that forwards
trace messages to a form, which then handles them appropriately. This arrange-
ment is diagrammed in Figure 4-2.

Building a Simple Messenger

75

Figure 4-2. Forwarding trace messages to a form

LogToForm()Write()

Application

SimpleTraceFormFormTraceListener

Calls Trace.Write()

The following is the outline for a FormTraceListener. This class is imple-
mented in a separate class library project named TraceComponent.

' The form listener is a TraceListener object that

' maps trace messages to an ITraceForm instance, which

' will then display them in a window.

Public Class FormTraceListener

Inherits TraceListener

Public TraceForm As ITraceForm

' Use the default trace form.

Public Sub New()

MyBase.New()

Me.TraceForm = New SimpleTraceForm()

End Sub

1054C04CMP1.qxd 6/19/03 10:25 AM Page 75

' Use a custom trace form.

Public Sub New(ByVal traceForm As ITraceForm)

MyBase.New()

If Not TypeOf traceForm Is Form Then

Throw New InvalidCastException(_

"ITraceForm must be used on a Form instance.")

End If

Me.TraceForm = traceForm

End Sub

Public Overloads Overrides Sub Write(ByVal value As String)

TraceForm.LogToForm(value)

End Sub

Public Overloads Overrides Sub WriteLine(ByVal message As String)

' WriteLine() and Write() are equivalent in this simple example.

Me.Write(message)

End Sub

End Class

The FormTraceListener can send messages to any form that implements an
ITraceForm interface, as shown here:

' Any custom form can be a "trace form" as long as it

' implements this interface.

Public Interface ITraceForm

' Determines how trace messages will be displayed.

Sub LogToForm(ByVal message As String)

End Interface

Finally, the TraceComponent assembly also includes a sample form that can
be used for debugging. It simply displays received messages in a list box and
automatically scrolls to the end of the list each time a message is received.

Public Class SimpleTraceForm

Inherits System.Windows.Forms.Form

Implements ITraceForm

' (Designer code omitted.)

Chapter 4

76

1054C04CMP1.qxd 6/19/03 10:25 AM Page 76

Public Sub LogToForm(ByVal message As String) Implements ITraceForm.LogToForm

' Add the log message.

lstMessages.Items.Add(message)

' Scroll to the bottom of the list.

lstMessages.SelectedIndex = lstMessages.Items.Count - 1

End Sub

End Class

This approach is useful for the Talk .NET server, but because it’s imple-
mented as a separate component, it can easily be reused in other projects.

The Coordination Server

Now that we’ve defined the basic building blocks for the Talk .NET system, it’s
time to move ahead and build the server. The TalkServer application has the task
of tracking clients and routing messages from one user to another. The core of
the application is implemented in the remotable ServerProcess class, which
is provided to clients as a Singleton object. A separate module, called Startup, is
used to start the TalkServer application. It initializes the Remoting configuration
settings, creates and initializes an instance of the FormTraceListener, and dis-
plays the trace form modally. When the trace form is closed, the application
ends, and the ServerProcess object is destroyed.

The startup code is shown here:

Imports System.Runtime.Remoting

Public Module Startup

Public Sub Main()

' Create the server-side form (which displays diagnostic information).

' This form is implemented as a diagnostic logger.

Dim frmLog As New TraceComponent.FormTraceListener()

Trace.Listeners.Add(frmLog)

' Configure the connection and register the well-known object

' (ServerProcess), which will accept client requests.

RemotingConfiguration.Configure("TalkServer.exe.config")

Building a Simple Messenger

77

1054C04CMP1.qxd 6/19/03 10:25 AM Page 77

' From this point on, messages can be received by the ServerProcess

' object. The object will be created for the first request,

' although you could create it explicitly if desired.

' Show the trace listener form. By using ShowDialog(), we set up a

' message loop on this thread. The application will automatically end

' when the form is closed.

Dim frm As Form = frmLog.TraceForm

frm.Text = "Talk .NET Server (Trace Display)"

frm.ShowDialog()

End Sub

End Module

When you start the server, the ServerProcess Singleton object isn’t created.
Instead, it’s created the first time a client invokes one of its methods. This will
typically mean that the first application request will experience a slight delay,
while the Singleton object is created.

The server configuration file is shown here. It includes three lines that are
required if you want to run the Talk .NET applications under .NET 1.1 (the version
of .NET included with Visual Studio .NET 2003). These lines enable full seriali-
zation, which allows the TalkServer to use the ITalkClient reference. If you are
using .NET 1.0, these lines must remain commented out, because they will not
be recognized. .NET 1.0 uses a slightly looser security model and allows full serial-
ization support by default.

<configuration>

<system.runtime.remoting>

<application name="TalkNET">

<service>

<wellknown

mode="Singleton"

type="TalkServer.ServerProcess, TalkServer"

objectUri="TalkServer" />

</service>

<channels>

<channel port="8000" ref="tcp" >

<!-- If you are using .NET 1.1, uncomment the lines below. -->

<!--

<serverProviders>

<formatter ref="binary" typeFilterLevel="Full" />

</serverProviders>

-->

Chapter 4

78

1054C04CMP1.qxd 6/19/03 10:25 AM Page 78

</channel>

</channels>

</application>

</system.runtime.remoting>

</configuration>

Most of the code for the ServerProcess class is contained in the methods
implemented from the ITalkServer interface. The basic outline is shown here:

Public Class ServerProcess

Inherits MarshalByRefObject

Implements ITalkServer

' Tracks all the user aliases, and the "network pointer" needed

' to communicate with them.

Private ActiveUsers As New Hashtable()

Public Sub AddUser(ByVal [alias] As String, ByVal client As ITalkClient) _

Implements TalkComponent.ITalkServer.AddUser

' (Code omitted.)

End Sub

Public Sub RemoveUser(ByVal [alias] As String) _

Implements TalkComponent.ITalkServer.RemoveUser

' (Code omitted.)

End Sub

Public Function GetUsers() As System.Collections.ICollection _

Implements TalkComponent.ITalkServer.GetUsers

' (Code omitted.)

End Function

<System.Runtime.Remoting.Messaging.OneWay()> _

Public Sub SendMessage(ByVal senderAlias As String, _

ByVal recipientAlias As String, ByVal message As String) _

Implements TalkComponent.ITalkServer.SendMessage

' (Code omitted.)

End Sub

End Class

You’ll see each method in more detail in the next few sections.

Building a Simple Messenger

79

1054C04CMP1.qxd 6/19/03 10:25 AM Page 79

Tracking Clients

The Talk .NET server tracks clients using a Hashtable collection. The Hashtable
provides several benefits compared to arrays or other types of collections:

• The Hashtable is a key/value collection (unlike some collections, which
do not require keys). This allows you to associate two pieces of infor-
mation: the user name and a network reference to the client.

• The Hashtable is optimized for quick key-based lookup. This is ideal,
because users send messages based on the user’s name. The server can
speedily retrieve the client’s location information.

• The Hashtable allows easy synchronization for thread-safe programming.
We’ll look at these features in the next chapter.

The collection stores ITalkClient references, indexed by user name.
Technically, the ITalkClient reference really represents an instance of the
System.Runtime.Remoting.ObjRef class. This class is a kind of network pointer—
it contains all the information needed to generate a proxy object to communicate
with the client, including the client channel, the object type, and the computer
name. This ObjRef can be passed around the network, thus allowing any other user
to locate and communicate with the client.

Following are the three collection-related methods that manage user regis-
tration. They’re provided by the server.

Public Sub AddUser(ByVal [alias] As String, ByVal client As ITalkClient) _

Implements TalkComponent.ITalkServer.AddUser

Trace.Write("Added user '" & [alias] & "'")

ActiveUsers([alias]) = client

End Sub

Public Sub RemoveUser(ByVal [alias] As String) _

Implements TalkComponent.ITalkServer.RemoveUser

Trace.Write("Removed user '" & [alias] & "'")

ActiveUsers.Remove([alias])

End Sub

Public Function GetUsers() As System.Collections.ICollection _

Implements TalkComponent.ITalkServer.GetUsers

Return ActiveUsers.Keys

End Function

Chapter 4

80

1054C04CMP1.qxd 6/19/03 10:25 AM Page 80

The AddUser() method doesn’t check for duplicates. If the specified user
name doesn’t exist, a new entry is created. Otherwise, any entry with the same
key is overwritten. The next chapter introduces some other ways to handle this
behavior, but in a production application, you would probably want to authenti-
cate users against a database with password information. This allows you to
ensure that each user has a unique user name. If a user were to log in twice in
a row, only the most recent connection information would be retained.

Note that only one part of the collection is returned to the client through the
GetUsers() method: the user names. This prevents a malicious client from using
the connection information to launch attacks against the peers on the system.
Of course, this approach isn’t possible in a decentralized peer-to-peer situation
(wherein peers need to interact directly), but in this case, it’s a realistic level of
protection to add.

Sending Messages

The process of sending a message requires slightly more work. The server per-
forms most of the heavy lifting in the SendMessage() method, which looks up
the appropriate client and invokes its ReceiveMessage() method to deliver the
message. If the recipient cannot be found (probably because the client has
recently disconnected from the network), an error message is sent to the mes-
sage sender by invoking its ReceiveMessage() method. If neither client can be
found, the problem is harmlessly ignored.

Public Sub SendMessage(ByVal senderAlias As String, _

ByVal recipientAlias As String, ByVal message As String) _

Implements TalkComponent.ITalkServer.SendMessage

' Deliver the message.

Dim Recipient As ITalkClient

If ActiveUsers.ContainsKey(recipientAlias) Then

Trace.Write("Recipient '" & recipientAlias & "' found")

Recipient = CType(ActiveUsers(recipientAlias), ITalkClient)

Else

' User wasn't found. Try to find the sender.

If ActiveUsers.ContainsKey(senderAlias) Then

Trace.Write("Recipient '" & recipientAlias & "' not found")

Recipient = CType(ActiveUsers(senderAlias), ITalkClient)

message = "'" & message & "' could not be delivered."

senderAlias = "Talk .NET"

Building a Simple Messenger

81

1054C04CMP1.qxd 6/19/03 10:25 AM Page 81

Else

Trace.Write("Recipient '" & recipientAlias & "' and sender '" & _

senderAlias & "' not found")

' Both sender and recipient weren't found.

' Ignore this message.

End If

End If

Trace.Write("Delivering message to '" & recipientAlias & "' from '" & _

senderAlias & "'")

If Not Recipient Is Nothing Then

Dim callback As New ReceiveMessageCallback(_

AddressOf Recipient.ReceiveMessage)

callback.BeginInvoke(message, senderAlias, Nothing, Nothing)

End If

End Sub

You’ll see that the server doesn’t directly call the ClientProcess.ReceiveMessage()
method because this would stall the thread and prevent it from continuing other
tasks. Instead, it makes the call on a new thread by using the BeginInvoke()
method provided by all delegates. It’s possible to use a server-side callback to
determine when this call completes, but in this case, it’s not necessary.

This completes the basic framework for the TalkServer application. The next
step is to build a client that can work with the server to send instant messages
around the network.

The TalkClient

The client portion of Talk .NET is called TalkClient. It’s designed as a Windows
application (much like Microsoft’s Windows Messenger). It has exactly two
responsibilities: to allow the user to send a message to any other online user and
to display a log of sent and received messages.

When the TalkClient application first loads, it executes a startup procedure,
which presents a login form and requests the name of the user that it should reg-
ister. If one isn’t provided, the application terminates. Otherwise, it continues by
taking two steps:

Chapter 4

82

1054C04CMP1.qxd 6/19/03 10:25 AM Page 82

• It creates an instance of the ClientProcess class and supplies the user
name. The ClientProcess class mediates all communication between the
remote server and the client user interface.

• It creates and shows the main chat form, named Talk, around which most
of the application revolves.

The startup code is shown here:

Public Class Startup

Public Shared Sub Main()

' Create the login window (which retrieves the user identifier).

Dim frmLogin As New Login()

' Only continue if the user successfully exits by clicking OK

' (not the Cancel or Exit button).

If frmLogin.ShowDialog() = DialogResult.OK Then

' Create the new remotable client object.

Dim Client As New ClientProcess(frmLogin.UserName)

' Create the client form.

Dim frm As New Talk()

frm.TalkClient = Client

' Show the form.

frm.ShowDialog()

End If

End Sub

End Class

On startup, the ClientProcess object registers the user with the coordination
server. Because ClientProcess is a remotable type, it will remain accessible to
the server for callbacks throughout the lifetime of the application. These call-
backs will, in turn, be raised to the user interface through local events. We’ll dive
into this code shortly.

The login form (shown in Figure 4-3) is quite straightforward. It exposes
a public UserName property, which allows the Startup routine to retrieve the user
name without violating encapsulation. This property could also be used to pre-fill
the txtUser textbox by retrieving the previously used name, which could be stored
in a configuration file or the Windows registry on the current computer.

Building a Simple Messenger

83

1054C04CMP1.qxd 6/19/03 10:25 AM Page 83

Public Class Login

Inherits System.Windows.Forms.Form

' (Designer code omitted.)

Private Sub cmdExit_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles cmdExit.Click

Me.Close()

End Sub

Public Property UserName()

Get

Return txtUser.Text

End Get

Set(ByVal Value)

txtUser.Text = UserName

End Set

End Property

End Class

Chapter 4

84

Figure 4-3. The login form

The Remotable ClientProcess Class

The ClientProcess class does double duty. It allows the TalkClient to interact
with the TalkServer to register and unregister the user or send a message
destined for another user. The ClientProcess also receives callbacks from the
TalkServer and forwards these to the TalkClient through an event. In the Talk .NET
system, the only time the TalkServer will call the ClientProcess is to deliver

1054C04CMP1.qxd 6/19/03 10:25 AM Page 84

a message sent from another user. At this point, the ClientProcess will forward
the message along to the user interface by raising an event. Because the server
needs to be able to call ClientProcess.ReceiveMessage() across the network, the
ClientProcess class must inherit from MarshalByRefObject. ClientProcess also
implements ITalkClient.

Here’s the basic outline for the ClientProcess class. Note that the user name
is stored as a member variable named _Alias, and exposed through the public
property Alias. Because alias is a reserved keyword in VB .NET, you will have to
put this word in square brackets in the code.

Imports System.Runtime.Remoting

Imports TalkComponent

Public Class ClientProcess

Inherits MarshalByRefObject

Implements ITalkClient

' This event occurs when a message is received.

' It's used to transfer the message from the remotable

' ClientProcess object to the Talk form.

Event MessageReceived(ByVal sender As Object, _

ByVal e As MessageReceivedEventArgs)

' The reference to the server object.

' (Technically, this really holds a proxy class.)

Private Server As ITalkServer

' The user ID for this instance.

Private _Alias As String

Public Property [Alias]() As String

Get

Return _Alias

End Get

Set(ByVal Value As String)

_Alias = Value

End Set

End Property

Public Sub New(ByVal [alias] As String)

_Alias = [alias]

End Sub

Building a Simple Messenger

85

1054C04CMP1.qxd 6/19/03 10:25 AM Page 85

' This override ensures that if the object is idle for an extended

' period, waiting for messages, it won't lose its lease and

' be garbage collected.

Public Overrides Function InitializeLifetimeService() As Object

Return Nothing

End Function

Public Sub Login()

' (Code omitted.)

End Sub

Public Sub LogOut()

' (Code omitted.)

End Sub

Public Sub SendMessage(ByVal recipientAlias As String, _

ByVal message As String)

' (Code omitted.)

End Sub

Private Sub ReceiveMessage(ByVal message As String, _

ByVal senderAlias As String) Implements ITalkClient.ReceiveMessage

' (Code omitted.)

End Sub

Public Function GetUsers() As ICollection

' (Code omitted.)

End Function

End Class

The InitializeLifetimeService() method must be overridden to preserve the
life of all ClientProcess objects. Even though the startup routine holds a reference
to a ClientProcess object, the ClientProcess object will still disappear from the
network after its lifetime lease expires, unless you explicitly configure an infinite
lifetime. Alternatively, you can use configuration file settings instead of overriding
the InitializeLifetimeService() method, as described in the previous chapter.

One other interesting detail is found in the ReceiveMessage() method.
This method is accessible remotely to the server because it implements
ITalkClient.ReceiveMessage. However, this method is also marked with the
Private keyword, which means that other classes in the TalkClient application
won’t accidentally attempt to use it.

The Login() method configures the client channel, creates a proxy to the
server object, and then calls the ServerProcess.AddUser() method to register

Chapter 4

86

1054C04CMP1.qxd 6/19/03 10:25 AM Page 86

the client. The Logout() method simply unregisters the user, but it doesn’t tear
down the Remoting channels—that will be performed automatically when the
application exits. Finally, the GetUsers() method retrieves the user names of all
the users currently registered with the coordination server.

Public Sub Login()

' Configure the client channel for sending messages and receiving

' the server callback.

RemotingConfiguration.Configure("TalkClient.exe.config")

' You could accomplish the same thing in code by uncommenting

' the following two lines:

' Dim Channel As New System.Runtime.Remoting.Channels.Tcp.TcpChannel(0) and

' ChannelServices.RegisterChannel(Channel).

' Create the proxy that references the server object.

Server = CType(Activator.GetObject(GetType(ITalkServer), _

"tcp://localhost:8000/TalkNET/TalkServer"), ITalkServer)

' Register the current user with the server.

' If the server isn't running, or the URL or class information is

' incorrect, an error will most likely occur here.

Server.AddUser(_Alias, Me)

End Sub

Public Sub LogOut()

Server.RemoveUser(_Alias)

End Sub

Public Function GetUsers() As ICollection

Return Server.GetUsers()

End Function

Following is the client configuration, which only specified channel infor-
mation. The client port isn’t specified and will be chosen dynamically from
the available ports at runtime. As with the server configuration file, you must
enable full serialization if you are running the Talk .NET system with .NET 1.1.
Otherwise, the TalkClient will not be allowed to transmit the ITalkClient refer-
ence over the network to the server.

Building a Simple Messenger

87

1054C04CMP1.qxd 6/19/03 10:25 AM Page 87

<configuration>

<system.runtime.remoting>

<application>

<channels>

<channel port="0" ref="tcp" >

<!-- If you are using .NET 1.1, uncomment the lines below. -->

<!--

<serverProviders>

<formatter ref="binary" typeFilterLevel="Full" />

</serverProviders>

-->

</channel>

</channels>

</application>

</system.runtime.remoting>

</configuration>

You’ll notice that the Login() method mingles some dynamic Remoting code
(used to create the TalkServer instance) along with a configuration file (used to
create the client channel). Unfortunately, it isn’t possible to rely exclusively on
a configuration file when you use interface-based programming with Remoting.
The problem is that the client doesn’t have any information about the server,
only an interface it supports. The client thus cannot register the appropriate
object type and create it directly because there’s no way to instantiate an inter-
face. The previous solution, which uses the Activator.GetObject() method, forces
you to include several distribution details in your code. This means that if the
object is moved to another computer or exposed through another port, you’ll
need to recompile the code.

You can resolve this problem in several ways. One option is simply to add
a custom configuration setting with the full object URI. This will be an applica-
tion setting, not a Remoting setting, so it will need to be entered in the
<appSettings> section of the client configuration file, as shown here:

<configuration>

<appSettings>

<add key="TalkServerURL"

value="tcp://localhost:8000/TalkNET/TalkServer" />

</appSettings>

Chapter 4

88

1054C04CMP1.qxd 6/19/03 10:25 AM Page 88

<system.runtime.remoting>

<application>

<channels>

<channel port="0" ref="tcp" >

<!-- If you are using .NET 1.1, uncomment the lines below. -->

<!--

<serverProviders>

<formatter ref="binary" typeFilterLevel="Full" />

</serverProviders>

-->

</channel>

</channels>

</application>

</system.runtime.remoting>

</configuration>

You can then retrieve this setting using the ConfigurationSettings.AppSettings
collection:

Server = CType(Activator.GetObject(GetType(ITalkServer), _

ConfigurationSettings.AppSettings("TalkServer")), ITalkServer)

Note that in this example, we use the loopback alias localhost, indicating
that the server is running on the same computer. You should replace this value
with the name of the computer (if it’s on your local network), the domain name,
or the IP address where the server component is running.

The last ingredient is the ClientProcess methods for sending and receiving
messages. The following code shows the SendMessage() and ReceiveMessage()
methods. The SendMessage() simply executes the call on the server and the
ReceiveMessage() raises a local event for the client, which will be handled by
the Talk form.

Public Sub SendMessage(ByVal recipientAlias As String, ByVal message As String)

Server.SendMessage(_Alias, recipientAlias, message)

End Sub

Private Sub ReceiveMessage(ByVal message As String, _

ByVal senderAlias As String) Implements ITalkClient.ReceiveMessage

RaiseEvent MessageReceived(Me, New MessageReceivedEventArgs(message, _

senderAlias))

End Sub

Building a Simple Messenger

89

1054C04CMP1.qxd 6/19/03 10:25 AM Page 89

The MessageReceived event makes use of the following custom EventArgs
class, which adds the message-specific information:

Public Class MessageReceivedEventArgs

Inherits EventArgs

Public Message As String

Public SenderAlias As String

Public Sub New(ByVal message As String, ByVal senderAlias As String)

Me.Message = message

Me.SenderAlias = senderAlias

End Sub

End Class

The Talk Form

The Talk form is the front-end that the user interacts with. It has four key tasks:

• Log the user in when the form loads and log the user out when the form
closes.

• Periodically refresh the list of active users by calling
ClientProcess.GetUsers(). This is performed using a timer.

• Invoke ClientProcess.SendMessage() when the user sends a message.

• Handle the MessageReceived event and display the corresponding infor-
mation on the form.

The form is shown in Figure 4-4. Messages are recorded in a RichTextBox,
which allows the application of formatting, if desired. The list of clients is main-
tained in a ListBox.

Chapter 4

90

1054C04CMP1.qxd 6/19/03 10:25 AM Page 90

The full form code is shown here:

Public Class Talk

Inherits System.Windows.Forms.Form

' (Designer code omitted.)

' The remotable intermediary for all client-to-server communication.

Public WithEvents TalkClient As ClientProcess

Private Sub Talk_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

Me.Text &= " - " & TalkClient.Alias

' Attempt to register with the server.

TalkClient.Login()

' Ordinarily, a user list is periodically fetched from the

' server. In this case, the code enables the timer and calls it

' once (immediately) to initially populate the list box.

tmrRefreshUsers_Tick(Me, EventArgs.Empty)

Building a Simple Messenger

91

Figure 4-4. The Talk form

1054C04CMP1.qxd 6/19/03 10:25 AM Page 91

tmrRefreshUsers.Enabled = True

lstUsers.SelectedIndex = 0

End Sub

Private Sub TalkClient_MessageReceived(ByVal sender As Object, _

ByVal e As MessageReceivedEventArgs) Handles TalkClient.MessageReceived

txtReceived.Text &= "Message From: " & e.SenderAlias

txtReceived.Text &= " delivered at " & DateTime.Now.ToShortTimeString()

txtReceived.Text &= Environment.NewLine & e.Message

txtReceived.Text &= Environment.NewLine & Environment.NewLine

End Sub

Private Sub cmdSend_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles cmdSend.Click

' Display a record of the message you're sending.

txtReceived.Text &= "Sent Message To: " & lstUsers.Text

txtReceived.Text &= Environment.NewLine & txtMessage.Text

txtReceived.Text &= Environment.NewLine & Environment.NewLine

' Send the message through the ClientProcess object.

Try

TalkClient.SendMessage(lstUsers.Text, txtMessage.Text)

txtMessage.Text = ""

Catch Err As Exception

MessageBox.Show(Err.Message, "Send Failed", _

MessageBoxButtons.OK, MessageBoxIcon.Exclamation)

End Try

End Sub

' Checks every 30 seconds.

Private Sub tmrRefreshUsers_Tick(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles tmrRefreshUsers.Tick

' Prepare list of logged-in users.

' The code must copy the ICollection entries into

' an ordinary array before they can be added.

Dim UserArray() As String

Dim UserCollection As ICollection = TalkClient.GetUsers

ReDim UserArray(UserCollection.Count - 1)

UserCollection.CopyTo(UserArray, 0)

Chapter 4

92

1054C04CMP1.qxd 6/19/03 10:25 AM Page 92

' Replace the list entries. At the same time,

' the code will track the previous selection and try

' to restore it, so the update won't be noticeable.

Dim CurrentSelection As String = lstUsers.Text

lstUsers.Items.Clear()

lstUsers.Items.AddRange(UserArray)

lstUsers.Text = CurrentSelection

End Sub

Private Sub Talk_Closed(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles MyBase.Closed

TalkClient.LogOut()

End Sub

End Class

The timer fires and refreshes the list of user names seamlessly every 30
seconds. In a large system, you would lower this value to ease the burden on the
coordinator. For a very large system with low user turnover, it might be more
efficient to have the server broadcast user-added and user-removed messages.
To support this infrastructure, you would add methods such as
ITalkClient.NotifyUserAdded() and ITalkClient.NotifyUserRemoved(). Or you
might just use a method such as ITalkClient.NotifyListChanged(), which tells
the client that it must contact the server at some point to update its information.

The ideal approach isn’t always easy to identify. The goal is to minimize the
network chatter as much as possible. In a system with 100 users who query
the server every 60 seconds, approximately 100 request messages and 100
response messages will be sent every minute. If the same system adopts user-
added and user-removed broadcasting instead, and approximately 5 users join
or leave the system in a minute, the server will likely need to send 5 messages
to each of 100 users, for a much larger total of 500 messages per minute. The
messages themselves would be smaller (because they would not contain the full
user list), but the network overhead would probably be great enough that this
option would work less efficiently.

In a large system, you might use “buddy lists” so that clients only receive
a user list with a subset of the total number of users. In this case, the server
broadcast approach would be more efficient because a network exchange would
only be required for those users who are on the same list as the entering or
departing peer. This reduces the total number of calls dramatically. Overall, this
is probably the most sustainable option if you want to continue to develop the
Talk .NET application to serve a larger audience.

Because the client chooses a channel dynamically, it’s possible to run several
instances of the TalkClient on the same computer. After starting the new instances,

Building a Simple Messenger

93

1054C04CMP1.qxd 6/19/03 10:25 AM Page 93

the user list of the original clients will quickly be refreshed to represent the full
user list. You can then send messages back and forth, as shown in Figure 4-5.
Clients can also send messages to themselves.

Chapter 4

94

Figure 4-5. Multiple client interaction

In each case, the coordination server brokers the communication. The trace
output for a sample interaction on the server computer is shown in Figure 4-6.

Figure 4-6. The server trace display

1054C04CMP1.qxd 6/19/03 10:25 AM Page 94

Enhancing Talk .NET

Talk .NET presents a straightforward way to reinvent the popular instant-messaging
application in .NET code. However, as it currently stands, it’s best suited for small
groups of users and heavily reliant on a central coordination server. In fact, in many
respects it’s hard to call this a true peer-to-peer application at all.

Fortunately, Talk .NET is just a foundation that you can build on. This sec-
tion considers possible enhancements, stumbling blocks, and a minor redesign
that allows true peer-to-peer communication.

Cleaning Up After Clients

Currently, the system assumes that all clients will log out politely when they’ve
finished using the system. Due to network problems, program error, or some
other uncontrollable factor, this may not be the case. Remember, one of the
defining characteristics of any peer-to-peer system is that it must take into
account the varying, fragile connectivity of users on the Internet. For this reason,
Talk .NET needs to adopt a more defensive approach.

Currently, the SendMessage() method raises an unhandled exception if it
can’t contact the specified user. This exception will propagate back to the user-
interface code, where it will be handled and will result in a user error message.
The problem with this approach is that the user remains in the server’s col-
lection and continues to “appear” online. If another user attempts to send
a message to this user, valuable server seconds will be wasted attempting to
contact the offline user, thereby raising the exception. This problem will persist
until the missing user logs back in to the system.

To account for this problem, users should be removed from the collection
if they cannot be contacted. Here’s the important portion of the SendMessage()
code, revised accordingly:

If Not Recipient Is Nothing Then

Dim callback As New ReceiveMessageCallback(_

AddressOf Recipient.ReceiveMessage)

Try

callback.BeginInvoke(message, senderAlias, Nothing, Nothing)

Catch Err As Exception

' Client could not be contacted.

Trace.Write("Message delivery failed")

ActiveUsers.Remove(recipientAlias)

End Try

End If

Building a Simple Messenger

95

1054C04CMP1.qxd 6/19/03 10:25 AM Page 95

You may also want to send a message explaining the problem to the user.
However, you also need to protect yourself in case the user who sent the mes-
sage can’t be contacted or found. To prevent the code from becoming too
fragmented, you can rewrite it using recursion, as shown here:

Public Sub SendMessage(ByVal senderAlias As String, _

ByVal recipientAlias As String, ByVal message As String) _

Implements TalkComponent.ITalkServer.SendMessage

Dim Recipient As ITalkClient

If ActiveUsers.ContainsKey(recipientAlias) Then

Trace.Write("Recipient '" & recipientAlias & "' found")

Recipient = CType(ActiveUsers(recipientAlias), ITalkClient)

If Not Recipient Is Nothing Then

Trace.Write("Delivering message to '" & recipientAlias & "' from _

'" & senderAlias & "'")

Dim callback As New ReceiveMessageCallback(_

AddressOf Recipient.ReceiveMessage)

' Deliver the message.

Try

callback.BeginInvoke(message, senderAlias, Nothing, Nothing)

Catch Err As Exception

' Client could not be contacted.

ActiveUsers.Remove(recipientAlias)

If senderAlias <> "Talk .NET"

' Try to send a warning message.

message = "'" & message & "' could not be delivered."

SendMessage("Talk .NET", senderAlias, message)

End Try

End If

Else

' User was not found. Try to find the sender.

Trace.Write("Recipient '" & recipientAlias & "' not found")

Chapter 4

96

1054C04CMP1.qxd 6/19/03 10:25 AM Page 96

If senderAlias <> "Talk .NET"

' Try to send a warning message.

message = "'" & message & "' could not be delivered."

SendMessage("Talk .NET", senderAlias, message)

End If

End If

End Sub

Of course, in order for this approach to work, you’ll need to ensure that no
other user can take the user name “Talk .NET.” You could add this restriction in
your logon or authentication code.

Toward Decentralization

Talk .NET will always requires some sort of centralized server component in
order to store information about logged-on users and their locations. However,
it’s not necessary to route all communication through the server. In fact,
Remoting allows clients to communicate directly—with a few quirks.

Remoting is designed as an object-based networking technology. In order for
clients to communicate directly, they need to have a reference to each other’s
remotable ClientProcess object. As you’ve already learned, you can create this
reference through a configuration file or .NET Remoting code, if you know the
appropriate URL. This is how the client contacts the coordination server in
the Talk .NET system—by knowing the computer and port where it’s located.
But there’s also another approach: by passing an object reference. The server
calls the client back by using one of its stored ITalkClient references.

The ITalkClient reference isn’t limited to exchanges between the server
and client. In fact, this reference can be passed to any computer on the network.
Because ITalkClient references a remotable object (in this case, ClientProcess),
whenever the reference travels to another application domain, it actually takes
the form of an ObjRef: a network pointer that encapsulates all the information
needed to describe the object and its location on the network. With this
information, any .NET application can dynamically construct a proxy and
communicate with the client it references. You can use the ObjRef as the
basis for decentralized communication.

To see this in action, modify the ITalkServer interface to expose an addi-
tional method that returns an ITalkClient reference for a specific user:

Building a Simple Messenger

97

1054C04CMP1.qxd 6/19/03 10:25 AM Page 97

Public Interface ITalkServer

' (Other code omitted.)

Function GetUser(ByVal [alias] As String) As ITalkClient

End Interface

Now, implement the GetUser() method in the ServerProcess class:

Public Function GetUser(ByVal [alias] As String) As TalkComponent.ITalkClient _

Implements TalkComponent.ITalkServer.GetUser

Return ActiveUsers([alias])

End Function

Now the ClientProcess class can call GetUser() to retrieve the ITalkUser
reference of the peer it wants to communicate with; it can then call the
ITalkClient.ReceiveMessage() method directly:

Public Sub SendMessage(ByVal recipientAlias As String, ByVal message As String)

Dim Peer As ITalkClient = Server.GetUser(recipientAlias)

Peer.ReceiveMessage(message, Me.Alias)

End Sub

With this change in place, the system will work exactly the same. However,
the coordination server is now simply being used as a repository of connection
information. Once the lookup is performed, it’s no longer required.

NOTE You can find this version of the application in the Talk .NET
Decentralized directory with the online samples for this chapter.

Which approach is best? There’s little doubt that the second choice is more
authentically peer-to-peer. But the best choice for your system depends on your
needs. Some of the benefits of the server-focused approach include the following:

Chapter 4

98

1054C04CMP1.qxd 6/19/03 10:25 AM Page 98

• The server can track system activity, which could be useful, depending
on your reporting needs. If you run the second version of this application,
you’ll see that the server trace log reflects when users are added or removed,
but it doesn’t contain any information when messages are sent.

• The connectivity is likely to be better. Typically, if a client can contact the
server, the server will be able to call the client. However, two arbitrary
clients may not be able to interact, depending on firewalls and other
aspects of network topology.

• The server can offer some special features that wouldn’t be possible in
a decentralized system, such as multiuser broadcasts that involve thou-
sands of users.

On the other hand, the benefits of the decentralized approach include the
following:

• The server has no ability to monitor conversations. This translates into
better security (assuming peers don’t fully trust the behavior of the server).

• The possibility for a server bottleneck decreases. This is because the server
isn’t called on to deal with messages, but rather, only to provide client
lookup, thereby reducing its burden and moving network traffic out to
the edges of the network.

Most peer-to-peer supporters would prefer the decentralized approach.
However, the current generation of instant-messaging applications avoid it for
connectivity reasons. Instead, they use systems that more closely resemble the
client-server model.

In some cases you might want to adopt a blended approach that makes
use of both of these techniques. One option is to allow the client to specify the
behavior through a configuration setting. Another option would be to use
peer-to-peer communication only when large amounts of data need to be trans-
mitted. This is the approach used in the next section to provide a file transfer
service for Talk .NET.

In any case, if you adopt the decentralized approach, you can further reduce
the burden on the central coordinator by performing the client lookup once,
and then reusing the connection information for all subsequent messages. For
example, you could cache the retrieved client reference in a local ActiveUsers
collection, and update it from the server if an error is encountered while sending
a message. Or, you might modify the system so that the GetUsers() method
returns the entire collection, complete with user names and ITalkClient network
pointers. The central coordinator would then simply need to support continuous

Building a Simple Messenger

99

1054C04CMP1.qxd 6/19/03 10:25 AM Page 99

requests to three methods: AddUser(), RemoveUser(), and GetUsers(). This type
of design works well if you use “buddy lists” to determine who a user can com-
municate with. That way, users will only retrieve information about a small
subset of the total number of users when they call GetUsers().

Adding a File Transfer Feature

Using the decentralized approach, it’s easy to implement a file transfer feature
that’s similar to the one provided by Microsoft’s Windows Messenger. This fea-
ture wouldn’t be practical with the centralized approach because it encourages
the server to become a bottleneck. Although transferring files isn’t a complex
task, it can take time, and the CLR only provides a limited number of threads to
handle server requests. If all the threads are tied up with sending data across
the network (or waiting as data is transferred over a low-bandwidth connection),
subsequent requests will have to wait—and could even time out.

The file transfer operation can be broken down into four steps:

1. Peer A offers a file to Peer B.

2. Peer B accepts the file offer and initiates the transfer.

3. Peer A sends the file to Peer B.

4. Peer B saves the file locally in a predetermined directory.

These steps require several separate method calls. Typically, in step 2,
the user will be presented with some sort of dialog box asking whether the file
should be transferred. It’s impractical to leave the connection open while this
message is being displayed because there’s no guarantee the user will reply
promptly, and the connection could time out while waiting. Instead, the peer-
to-peer model requires a looser, disconnected architecture that completely
separates the file offer and file transfer.

The first step needed to implement the file transfer is to redefine the
ITalkClient interface. It’s at this point that most of the coding and design deci-
sions are made.

Public Interface ITalkClient

' (Other code omitted.)

Chapter 4

100

1054C04CMP1.qxd 6/19/03 10:25 AM Page 100

Sub ReceiveFileOffer(ByVal filename As String, _

ByVal fileIdentifier As Guid, ByVal senderAlias As String)

Function TransferFile(ByVal fileIdentifier As Guid, _

ByVal senderAlias As String) As Byte()

End Interface

You’ll notice that both methods use a globally unique identifier (GUID) to
identify the file. There are several reasons for this approach, all of which revolve
around security. If the TransferFile() method accepted a full file name, it would
be possible for the client to initiate a transfer even if the file had not been
offered, thereby compromising data security. To circumvent this problem, all
files are identified uniquely. The identifier used is a GUID, which guarantees that
a client won’t be able to guess the identifier for a file offered to another user.
Also, because GUIDs are guaranteed to be unique, a peer can offer multiple files
to different users without confusion. More elaborate security approaches are
possible, but this approach is a quick and easy way to prevent users from getting
ahold of the wrong files.

The file itself is transferred as a large byte array. While this will be sufficient
in most cases, if you want to control how the data is streamed over the network,
you’ll need to use a lower-level networking class, such as the ones described in
the second part of this book.

Once the ITalkClient interface is updated, you can begin to revise the
ClientProcess class. The first step is to define a Hashtable collection that can
track all the outstanding file offers since the application was started:

Private OfferedFiles As New Hashtable()

To offer a file, the TalkClient calls the public SendFileOffer() method. This
method looks up the client reference, generates a new GUID to identify the file,
stores the information, and sends the offer.

Public Function SendFileOffer(ByVal recipientAlias As String, _

ByVal sourcePath As String)

' Retrieve the reference to the other user.

Dim peer As ITalkClient = Server.GetUser(recipientAlias)

' Create a GUID to identify the file, and add it to the collection.

Dim fileIdentifier As Guid = Guid.NewGuid()

OfferedFiles(fileIdentifier) = sourcePath

Building a Simple Messenger

101

1054C04CMP1.qxd 6/19/03 10:25 AM Page 101

' Offer the file.

peer.ReceiveFileOffer(Path.GetFileName(sourcePath), fileIdentifier, Me.Alias)

End Function

Notice that only the file name is transmitted, not the full file path. The full
file path is stored for future reference in the Hashtable collection, but it’s
snipped out of the offer using the Path class from the System.IO namespace.
This extra step is designed to prevent the recipient from knowing where the
offered file is stored on the offering peer.

TIP Currently, the TalkClient doesn’t go to any extra work to “expire” an
offered file and remove its information from the collection if it isn’t trans-
ferred within a set period of time. This task could be accomplished using
a separate thread that would periodically examine the collection. However,
because the in-memory size of the OfferedFiles collection will always remain
relatively small, this isn’t a concern, even after making a few hundred
unclaimed file offers.

The file offer is received by the destination peer with the ReceiveFileOffer()
method. When this method is triggered, the ClientProcess class raises a local
event to alert the user:

Event FileOfferReceived(ByVal sender As Object, _

ByVal e As FileOfferReceivedEventArgs)

Private Sub ReceiveFileOffer(ByVal filename As String, _

ByVal fileIdentifier As System.Guid, ByVal senderAlias As String) _

Implements TalkComponent.ITalkClient.ReceiveFileOffer

RaiseEvent FileOfferReceived(Me, _

New FileOfferReceivedEventArgs(filename, fileIdentifier, senderAlias))

End Sub

The FileOfferReceivedEventArgs class simply provides the file name, file
identifier, and sender’s name:

Public Class FileOfferReceivedEventArgs

Inherits EventArgs

Chapter 4

102

1054C04CMP1.qxd 6/19/03 10:25 AM Page 102

Public Filename As String

Public FileIdentifier As Guid

Public SenderAlias As String

Public Sub New(ByVal filename As String, ByVal fileIdentifier As Guid, _

ByVal senderAlias As String)

Me.Filename = filename

Me.FileIdentifier = fileIdentifier

Me.SenderAlias = senderAlias

End Sub

End Class

The event is handled in the form code, which will then ask the user
whether the transfer should be accepted. If it is, the next step is to call the
ClientProcess.AcceptFile() method, which initiates the transfer.

Public Sub AcceptFile(ByVal recipientAlias As String, _

ByVal fileIdentifier As Guid, ByVal destinationPath As String)

' Retrieve the reference to the other user.

Dim peer As ITalkClient = Server.GetUser(recipientAlias)

' Create an array to store the data.

Dim FileData As Byte()

' Request the file.

FileData = peer.TransferFile(fileIdentifier, Me.Alias)

Dim fs As FileStream

' Create the local copy of the file in the desired location.

' Warning: This method doesn't bother to check if it's overwriting

' a file with the same name.

fs = File.Create(destinationPath)

fs.Write(FileData, 0, FileData.Length)

' Clean up.

fs.Close()

End Sub

Building a Simple Messenger

103

1054C04CMP1.qxd 6/19/03 10:25 AM Page 103

There are several interesting details in this code:

• It doesn’t specify the destination file path and file name. This information
is supplied to the AcceptFile() method through the destinationPath
parameter. This allows the form code to stay in control, perhaps using
a default directory or prompting the user for a destination path.

• It includes no exception-handling code. The assumption is that the form
code will handle any errors that occur and inform the user accordingly.

• It doesn’t worry about overwriting any file that may already exist at the
specified directory with the same name. Once again, this is for the form
code to check. It will prompt the user before starting the file transfer.

The peer offering the file sends it over the network in its TransferFile()
method, which is in many ways a mirror image of AcceptFile().

Private Function TransferFile(ByVal fileIdentifier As System.Guid, _

ByVal senderAlias As String) As Byte() _

Implements TalkComponent.ITalkClient.TransferFile

' Ensure that the GUID corresponds to a valid file offer.

If Not OfferedFiles.Contains(fileIdentifier) Then

Throw New ApplicationException(_

"This file is no longer available from the client.")

End If

' Look up the file path from the OfferedFiles collection and open it.

Dim fs As FileStream

fs = File.Open(OfferedFiles(fileIdentifier), FileMode.Open)

' Fill the FileData byte array with the data from the file.

Dim FileData As Byte()

ReDim FileData(fs.Length)

fs.Read(FileData, 0, FileData.Length)

' Remove the offered file from the collection.

OfferedFiles.Remove(fileIdentifier)

' Clean up.

fs.Close()

Chapter 4

104

1054C04CMP1.qxd 6/19/03 10:25 AM Page 104

' Transmit the file data.

Return FileData

End Function

The only detail we haven’t explored is the layer of user-interface code in the
Talk form. The first step is to add an “Offer File” button that allows the user to
choose a file to send. The file is chosen using the OpenFileDialog class.

Private Sub cmdOffer_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles cmdOffer.Click

' Prompt the user for a file to offer.

Dim dlgOpen As New OpenFileDialog()

dlgOpen.Title = "Choose a File to Transmit"

If dlgOpen.ShowDialog() = DialogResult.OK Then

Try

' Send the offer.

TalkClient.SendFileOffer(lstUsers.Text, dlgOpen.FileName)

Catch Err As Exception

MessageBox.Show(Err.Message, "Send Failed", _

MessageBoxButtons.OK, MessageBoxIcon.Exclamation)

End Try

End If

End Sub

The Talk form code also handles the FileOfferReceived event, prompts the
user, and initiates the transfer if accepted (see Figure 4-7).

Building a Simple Messenger

105

Figure 4-7. Offering a file transfer

1054C04CMP1.qxd 6/19/03 10:25 AM Page 105

Private Sub TalkClient_FileOfferReceived(ByVal sender As Object, _

ByVal e As TalkClient.FileOfferReceivedEventArgs) _

Handles TalkClient.FileOfferReceived

' Create the user message describing the file offer.

Dim Message As String

Message = e.SenderAlias & " has offered to transmit the file named: "

Message &= e.Filename & Environment.NewLine

Message &= Environment.NewLine & "Do You Accept?"

' Prompt the user.

Dim Result As DialogResult = MessageBox.Show(Message, _

"File Transfer Offered", MessageBoxButtons.YesNo, MessageBoxIcon.Question)

If Result = DialogResult.Yes Then

Try

' The code defaults to the TEMP directory, although a more

' likely option would be to read information from a registry or

' configuration file setting.

Dim DestinationPath As String = "C:\TEMP\" & e.Filename

' Receive the file.

TalkClient.AcceptFile(e.SenderAlias, e.FileIdentifier, _

DestinationPath)

' Assuming no error occurred, display information about it

' in the chat window.

txtReceived.Text &= "File From: " & e.SenderAlias

txtReceived.Text &= " transferred at "

txtReceived.Text &= DateTime.Now.ToShortTimeString()

txtReceived.Text &= Environment.NewLine & DestinationPath

txtReceived.Text &= Environment.NewLine & Environment.NewLine

Catch Err As Exception

MessageBox.Show(Err.Message, "Transfer Failed", _

MessageBoxButtons.OK, MessageBoxIcon.Exclamation)

End Try

End If

End Sub

Chapter 4

106

1054C04CMP1.qxd 6/19/03 10:25 AM Page 106

NOTE Adding a file transfer feature such as this one is a notorious security
risk. Because the communication is direct, there’s no way to authenticate the
recipient. (A central server, on the other hand, could verify that users are who
they claim to be.) That means that a file could be offered to the wrong user or
a malicious user who is impersonating another user. To reduce the risk, the
server component could require user ID and password information before
returning any information from the GetUsers() collection. We’ll deal with
security more closely in Chapter 11.

Scalability Challenges with the Simple Implementation

In its current form, the Talk .NET application is hard pressed to scale in order to
serve a large audience. The key problem is the server component, which could
become a critical bottleneck as the traffic increases. To reduce this problem, you
can switch to the decentralized approach described earlier, although this is only
a partial solution. It won’t deal with the possible problems that can occur if the
number of users grows so large that storing them in an in-memory hashtable is
no longer effective.

Building a Simple Messenger

107

Figure 4-8. A completed file transfer

1054C04CMP1.qxd 6/19/03 10:25 AM Page 107

Databases and a Stateless Server

To combat this problem, you would need to store the list of logged-on users and
their connection information in an external data store such as a database. This
would reduce the performance for individual calls (because they would require
database lookups), but it would increase the overall scalability of the system
(because the memory overhead would be lessened).

This approach also allows you to create a completely stateless coordination
server. In this case, you could replace your coordination server by a web farm
of computers, each of which would access the same database. Each client
request could be routed to the computer with the least traffic, guaranteeing
performance. Much of the threading code presented in the next chapter would
not be needed anymore, because all of the information would be shared in
a common database that would provide its own concurrency control. In order
to create the cluster farm and expose it under a single IP, you would need to use
hardware clustering or a software load-balancing solution such as Microsoft’s
Application Center. All in all, this is a fairly good idea of how a system such as
Microsoft’s Windows Messenger works. It’s also similar to the approach followed
in the third part of this book, where you’ll learn how to create a discovery server
using a web service.

OneWay Methods

There is also a minor messaging enhancement you can implement using the
OneWay attribute from the System.Runtime.Remoting.Messaging namespace.
When you apply this attribute to a method, you indicate that, when this method
is called remotely, the caller will disconnect immediately without waiting for the
call to complete. This means that the method cannot return a result or modify
a ByVal parameter. It also means that any exception thrown in the method will
not be detected by the caller. The advantage of this approach is that it eliminates
waiting. In the Talk .NET system, the coordination server automatically calls
a client if a message cannot be delivered. Thus, there’s no reason for the client
to wait while the message is actually being delivered.

There are currently two methods that could benefit from the OneWay
attribute: ClientProcess.ReceiveMessage() and ServerProcess.SendMessage().
Here’s an example:

<System.Runtime.Remoting.Messaging.OneWay()> _

Private Sub ReceiveMessage(ByVal message As String, _

ByVal senderAlias As String) Implements ITalkClient.ReceiveMessage

' (Code omitted.)

End Sub

Chapter 4

108

1054C04CMP1.qxd 6/19/03 10:25 AM Page 108

Note that there’s one reason you might not want to apply the OneWay
attribute to ServerProcess.SendMessage(). If you do, you won’t be able to detect
an error that might result if the user has disconnected without logging off cor-
rectly. Without catching this error, it’s impossible to detect the problem, notify
the sender, and remove the user from the client collection. This error-handling
approach is implemented in the next chapter.

Optional Features

Finally, there are a number of optional features that you can add to Talk .NET.
These include variable user status, user authentication with a password, and
buddy lists. The last of these is probably the most useful, because it allows you
to limit the user list information. With buddy lists, users only see the names of
the users that they want to contact. However, buddy lists must be stored on the
server permanently, and so can’t be held in memory. Instead, this information
would probably need to be stored in a server-side database.

Another option would be to store a list on the local computer, which would
then be submitted with the login request. This would help keep the system
decentralized, but it would also allow the information to be easily lost, and make
it difficult for users to obtain location transparency and use the same buddy list
from multiple computers. As you’ll see, users aren’t always prepared to accept
the limitations of decentralized peer-to-peer applications.

Firewalls, Ports, and Other Issues

Remoting does not provide any way to overcome some of the difficulties that are
inherent with networking on the Internet. For example, firewalls, depending on
their settings, can prevent communication between the clients and the coordi-
nation server. On a local network, this won’t pose a problem. On the Internet,
you can lessen the possibility of problems by following several steps:

• Use the centralized design in which all communication is routed through
the coordination server.

• Make sure the coordination server is not behind a firewall (in a company
network, you would place the coordination server in the demilitarized
zone, or DMZ). This helps connectivity because often communication will
succeed when the client is behind a firewall, but not when both the client
and server are behind firewalls.

Building a Simple Messenger

109

1054C04CMP1.qxd 6/19/03 10:25 AM Page 109

• Change the configuration files so that HTTP channels are used instead.
They’re typically more reliable over the Internet and low-bandwidth con-
nections. You should still use binary formatting, however, unless you’re
trying to interoperate with non-.NET clients.

It often seems that developers and network administrators are locked in an
endless battle, with developers trying to extend the scope of their applications
while network administrators try to protect the integrity of their network. This
battle has escalated to such a high point that developers tout new features such
as .NET web services because they use HTTP and can communicate through
a firewall. All this ignores the fact that, typically, the firewall is there to prevent
exactly this type of communication. Thwarting this protection just means that
firewall vendors will need to go to greater lengths building intelligence into
their firewall products. They’ll need to perform more intensive network analysis
that might reject SOAP messages or deny web-service communication based on
other recognizable factors. These changes, in turn, raise the cost of the required
servers and impose additional overhead.

In short, it’s best to deal with firewall problems by configuring the firewall.
If your application needs to use a special port, convince the network adminis-
trators to open it. Similarly, using port 80 for a peer-to-peer application is sure to
win the contempt of system administrators everywhere. If you can’t ensure that
your clients can use another port, you may need to resort to this sleight-of-hand,
but it’s best to avoid the escalating war of Internet connectivity altogether.

NOTE Ports are generally divided into three groups: well-known ports
(0–1023), registered ports (1024–49151), and dynamic ports (49152–65535).
Historically, well-known ports have been used for server-based applications
such as web servers (80), FTP (20), and POP3 mail transfer (110). In your
application, you would probably do best to use a registered or dynamic
port that isn’t frequently used. These are less likely to cause a conflict
(although more likely to be blocked by a firewall). For example, 6346 is
most commonly used by Gnutella. For a list of frequently registered ports,
refer to the C:\{WinDir]\System32\Drivers\Etc\Services file or the
http://www.iana.org/assignments/port-numbers site.

Remoting and Network Address Translation

.NET Remoting, like many types of distributed communication, is challenged by
firewalls, proxy servers, and network address translation (NAT). Many program-
mers (and programming authors) assume that using an HTTP channel will solve
these problems. It may—if the intervening firewall restricts packets solely based

Chapter 4

110

1054C04CMP1.qxd 6/19/03 10:25 AM Page 110

on whether they contain binary information. However, this won’t solve a much
more significant problem: Most firewalls allow outgoing connections but prevent
all incoming ones. Proxy servers and NAT devices work in the same way. This is
a significant limitation. It means that a Talk .NET peer can contact the server
(and the server can respond), but the server cannot call back to the client to
deliver a message.

There’s more than one way to solve this problem, but none is easy (or ideal).
You could implement a polling mechanism, whereby every client periodically
connects to the server and asks for any unsent messages. The drawback of this
approach is that the message latency will be increased, and the load on the
server will rise dramatically with the number of clients.

Another approach is to use some sort of bidirectional communication
method. For example, you might want to maintain a connection and allow the
server to fire its event or callback at any time using the existing connection. This
also reduces the number of simultaneous clients the server can handle, and it
requires a specially modified type of Remoting channel. Ingo Rammer has devel-
oped one such channel, and it’s available at http://www.dotnetremoting.cc/
projects/modules/BidirectionalTcpChannel.asp. However, this bidirectional
channel isn’t yet optimized for a production environment, so enterprise
developers will need to wait.

Unfortunately, neither of these two proposed solutions will work if you want
to use decentralized communication in which peers contact each other directly.
In this case, you’ll either need to write a significant amount of painful low-level
networking code (which is beyond the scope of this book), or use a third-party
platform such as those discussed in Part Three.

The Last Word

In this chapter, we developed an instant-messaging application using Remoting
and showed how it could be modified into a peer-to-peer system with a central
lookup service. However, the current version of the Talk .NET system still suffers
from some notable shortcomings, which will become particularly apparent
under high user loads. If different users attempt to register, unregister, or send
messages at the same time, the user collection may be updated incorrectly, and
information could be lost. To guard against these problems, which are almost
impossible to replicate under modest loads, you’ll need to add multithreading,
as described in the next chapter.

Building a Simple Messenger

111

1054C04CMP1.qxd 6/19/03 10:25 AM Page 111

