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Foreword

Welcome!
I am especially privileged and honored that Professors Maugin, Metrikine and Ero-
feyev, the organizers and chairmen of this meeting, the Euromech Colloquium 510
honoring the Cosserats for the 100 year anniversary of the publication of their book,
have asked me to say a few words to express my welcome salute to you. Much as
I would have liked to do this in person, my physical being is no longer keeping pace
with my mental desires and, thus, alas, is denying me this luxury.

Sometime in the past, I remember reading an article whose author’s name has
slipped my memory—perhaps it was Marston Morse, Professor Emeritus at the In-
stitute for Advanced Study, who wrote (and I paraphrase):

Discovery of new mathematical disciplines originates from two criteria:

1. Generalization
2. Inversion

Some of the earliest examples for the validity of these criteria are:

(a) The Newton–Leibniz discovery of differentiation and integration, which started
calculus; and

(b) The Theory of Elasticity, which was conceived when Robert Hooke, in 1678,
published an anagram: “ceiiinosssttuu”, which he expressed as “ut tensio sic
vis”, meaning, the power of any material is in the same proportion within the
tension thereof. Presently, this is known as “Hooke’s Law”.

Some 250 years later, “The modern theory of elasticity may be considered to
have its birth in 1821, when Navier first gave the equations for the equilibrium and
motion of elastic solids, . . . ” (Todhunter and Pearson).

Of course, many other scientists, Cauchy, Poisson, Stokes, and others, after 1821,
improved and extended the theory to other materials, e.g., viscous fluids, and they
investigated atomic and molecular foundations. This is typical—for the maturation
of any discipline is the result of the contributions of many scientists and often takes
a long time.
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Improvements and extensions of the theory of elasticity continued in the nine-
teenth and early part of the twentieth century: rigorous mathematical theory of non-
linear elasticity, relativistic continuum mechanics, magneto-elasticity and other “hy-
phenated” sister fields, like viscoelasticity and thermoelasticity. Underlying basic
postulates (e.g., frame-independence, thermodynamical restrictions, relativistic in-
variance) were introduced and applied in the development of field equations and ad-
missible constitutive laws. Research in granular and porous elastic solids, composite
elastic materials, polymeric materials, and statistical and molecular foundations of
continua are but a few examples that still remain as active research fields.

Eugène Maurice Pierre Cosserat and his brother François Cosserat, 100 years
ago, cast the seed of Generalized Continua, by publishing a book, in 1909, entitled
Théorie des Corps Déformables (Hermann, Paris). The revolutionary contribution
of this book is that material points of an elastic solid are considered equipped with
directors, which give rise to the concept of couple stress and a new conservation law
for the moment of momentum. By means of a variational principle which they called
“l’action euclidienne”, they obtained “balance laws of elasticity”. The introduction
of the director concept made it possible to formulate anisotropic fluids, e.g., liquid
crystals, blood.

The Cosserats did not give constitutive equations. These, and the introduction of
the microinertia tensor and the associated conservation law, which are crucial to the
dynamic problems in solid and fluent media (e.g., liquid crystals, suspensions, etc.)
were introduced later by other scientists.

Over half a century elapsed before the Cosserats’ book was discovered by re-
searchers. After 1960, independent, Cosserat-like theories were published in Euro-
pean countries, the USA and the USSR, under a variety of nomenclature (e.g., cou-
ple stress, polar elasticity, asymmetric elasticity, strain gradient theories, micropolar
elasticity, multipolar theory, relativistic continua with directors, etc.). I recall a liter-
ature search on these subjects that was shown to me by a visiting scholar, Professor
Listrov, from the USSR This book contained several hundred entries of papers pub-
lished by 1970.

The next significant generalizations appear in 1964 and thereafter, in the areas
of microelasticity, microfluid mechanics, micropolar continua, micromorphic elec-
trodynamics, and others that constitute the family of micromorphic continua or mi-
crostructure theories.

The conception of these theories was based on the query, “Is it possible to
construct continuum theories that can predict physical phenomena on the atomic,
molecular, or nano scales?” These would require supplying additional degrees of
freedom to the material point beyond a director. After all, the molecules that con-
stitute the internal structures of the material points (particles) undergo deformations
and rotations arising from the displacement and rotations of their constituent atoms.
This supplies twelve degrees of freedom. A body with such an internal structure is
called Micromorphic grade 1. Micromorphic continua of grade N > 1 have also
been formulated.

To understand the difference between the Cosserat and the micromorphic elastic-
ities, it is important to note that micromorphic elasticity gives rise to two different
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second-order strain tensors (only one of which is symmetric), and to one third-order
microstrain tensor. Correspondingly, the balance laws introduce two second-order
stress tensors (only one of which is symmetric), and one third-order microstress
(moment-stress) tensor.

In special cases, the Micromorphic Theory leads to other special continuum the-
ories:

Micromorphic → Microstretch → Micropolar (Cosserats) → Classical

The next important contributions are the nonlocal continuum theories that gener-
alize constitutive equations for classical and micromorphic continuum theories, by
introducing the influence of distant material points, e.g., the stress tensor is a func-
tional of the strain tensors of all material points of a body. In this sense, micromor-
phic grade 1 is a nonlocal theory with a short nonlocality (or discrete nonlocality).
Among the many important contributions of nonlocality, I mention that it eliminates
the stress singularity (infinite stress) at the crack tip predicted by classical elasticity.
Moreover, a natural fracture criterion was born which states that failure occurs when
the maximum stress becomes or exceeds the cohesive stress.

The Present State. No doubt other generalized continuum theories are in a state
of composition. But mathematical theories cannot be considered the truth without
experimental verification. Unfortunately, excluding classical theories, the experi-
mental work for all these theories is left wanting. The opportunity is here and now,
for experimentalists to determine the material moduli and/or to confirm or challenge
the validity of some of these theories.

A Note on the Future. Ultimately, all continuum theories must be based on the
quantum field theory, or perhaps, on the quantum theory of general relativity (when
unified). This offers the greatest challenges to future scientific investigators.

I am pleased to see so many interesting contributions to some of these fields
included in this meeting, which are in the spirit of the Cosserats’ work.

I welcome you and send my best wishes for what, I am sure, will be an inspira-
tional and productive meeting.

Littleton, Colorado, May 2009 A. Cemal Eringen
Professor Emeritus,

Princeton University



Preface

This volume gathers in some organized and edited manner most of the contributions
delivered at the EUROMECH Colloquium 510 held in Paris, May 13–16, 2009. The
explicit aim of the colloquium was, on the occasion of the centennial of the publica-
tion of a celebrated book (Théorie des corps déformables) by the Cosserat brothers,
to examine the evolution in time since the Cosserats, and the actuality of the notion
of generalized continuum mechanics to which the Cosserats’ work contributed to
some important extent. Of course, the Cosserat book belongs to this collection of
classics that are more often cited than read. The reason for this is twofold. First, the
vocabulary and mathematical symbols have tremendously evolved since the early
1900s, and second, the Cosserat book by itself is an intrinsically difficult reading.
As a matter of fact, more than introducing precisely the notion of Cosserat media
(a special class of generalized continua), the Cosserats’ book had a wider ambition,
that of presenting a reflection on the general framework of continuum mechanics,
with the notion of group permeating—not explicitly—its structure (cf. the notion of
“action euclidienne”). This is reflected in many of the following contributions.

Overall, the whole landscape of contemporary generalized continuum mechanics
was spanned from models to applications to structures, dynamical properties, prob-
lems with measurement of new material coefficients, numerical questions posed by
the microstructure, and new possible developments (nanomaterials, fractal struc-
tures, new geometrical ideas). Remarkably absent were models and approaches us-
ing the concept of strong nonlocality (constitutive equations that are functionals over
space). This is a mark of a certain evolution.

An interesting comparison can be made with the contents of the landmark IU-
TAM Symposium gathered in 1967 in Stuttgart-Freudenstadt under the chairmanship
of the late E. Kröner. Most of the models presented at that meeting by luminaries
such as Noll, Eringen, Rivlin, Green, Sedov, Mindlin, Nowacki, Stojanovic, and
others were essentially of the Cosserat type and, still in their infancy, had a much
questioned usefulness that is no longer pondered. Most of the contributions were
either American or German. With the present EUROMECH we witnessed an en-
largement of the classes of models with a marked interest in gradient-type theories.
Also, because the political situation has drastically changed within forty tears, we
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realize now the importance of the Russian school. The latter was, in fact, very much
ignored in the 1960s and 1970s while some Russian teams were ahead of their West-
ern colleagues in acknowledging their debt to the Cosserats and other scientists such
as Leroux, Le Corre and Laval in France. Of these heroic Soviet times, E. Aero and
V. Palmov, both from St. Petersburg, who published on the subject matter in the
early 1960s, were present in Paris. Professor A.C. Eringen (he also in Freundenstadt
in 1967), unable to attend, kindly sent us a Welcome address that is reproduced here
in the way of a Foreword.

Unfortunately, the editing of this book was saddened by the passing away of
A.C. Eringen on December 06, 2010, at the age of 88, after more than sixty years of
devotion to engineering science, physics and applied mathematics.

The Colloquium was financially and materially supported by the Engineering
UFR of the Université Pierre et Marie Curie (UPMC), the STII Directorate of the
French Centre National de la Recherche Scientifique, and the Institut Jean Le Rond
d’Alembert, UPMC–Paris Universitas and UMR 7190 of CNRS. Members of the
MPIA Team of this Institute helped much in the local organization. Ms Simona
Otarasanu is to be thanked for her efficient treatment of many questions. Without
the expertise of Ms Janine Indeau, the present volume would not exist.

Paris Gérard A. Maugin

Delft Andrei V. Metrikine
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