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Preface

This book is a self contained introduction to super differential geometry, intended for
graduate students in mathematics and theoretical physics and other people who want to
learn the basics about supermanifolds. It is self contained in that it only requires standard
undergraduate knowledge. However, some knowledge of ordinary (non super) differential
geometry will make this text much easier to read.

Various versions of super differential geometry exist, some of which are equivalent
and some of which are not. The version presented here is equivalent to those that are
most widely used: the supermanifolds of DeWitt and the sheaf theoretic approach
to supermanifolds of Kostant and Leites. The approach taken here is based on an index
free formalism using a graded commutative ring containing the usual real numbers as
well as so called anticommuting numbers. Starting with a non-standard definition of a
differentiable function, valid in the real case, in the complex case and in the super case,
the theory is developed as if it were ordinary differential geometry. It is shown that most
constructions and theorems in ordinary differential geometry have a natural generalization
to the super context. Moreover, even the proofs bear more than a superficial resemblance
to their counter parts in ordinary differential geometry. The (equivalent) sheaf-theoretic
approach to supermanifolds makes it manifest that the theory is “independent” of the choice
of but at the same time it hides the more geometric nature of the theory. The approach
presented here can be seen as a theory with a parameter Choosing gives
ordinary differential geometry, choosing gives super differential geometry,
choosing gives the theory of complex manifolds, etc. Of course, in each of these
cases some small but usually superficial changes have to be made, and not all results
remain true in all cases (e.g., Batchelor’s theorem, which uses partitions of unity, is not
valid for (super) complex manifolds). But the main body of the results is not affected by
the choice of

In Chapter I the general theory of graded linear algebra (graded by an arbitrary abelian
group) is outlined. This plays the same role in super differential geometry as does linear
algebra in ordinary differential geometry and as does commutative algebra in algebraic
geometry. Since the basic ring is (in principle) not commutative, we have to make a
distinction between left and right linear maps. The isomorphism between these two kinds

ix



x Preface

of maps is given by the operator which will later be identified with (super) transposition
of matrices.

In chapter II we specialize to linear algebra and we impose some restrictions
on the ring The canonical example of that satisfies all conditions (the ones imposed
in chapter II and also other ones imposed later on) is the exterior algebra of an infinite
dimensional real vector space: Some of the more important points of
this chapter are the following. In section 2 it is shown that any (finitely generated) free
graded admits a well defined graded dimension. In section 4 the relation
between matrices and linear maps is explained. The reader should really pay attention
here, because there are three different natural ways to associate a matrix to a linear map,
and these three different ways imply different ways how to multiply a matrix by an element
of (so as to be compatible with the multiplication of the corresponding linear map by
the element of It is here that we see most clearly the role of the transposition operator
introduced in chapter I to relate left and right linear maps. In section 5 the graded trace is
defined for any linear map (and thus for any matrix, not only the even ones), as well as its
integrated version for even maps, the graded determinant or Berezinian. Finally in section
6 the body map B is introduced, which provides an “isomorphism” between equivalence
classes of free graded and direct sums of two real vector spaces. It is this body
map which gives the link between standard linear algebra and linear algebra.

The heart of this book lies in chapter III, in which the notion of a supermanifold is
developed based on a non-standard definition of differentiable functions. The key idea is
expressed by the following formula, valid for functions of class on convex domains
in

If we write this as it is obvious that is of class
if and only if the function is of class Moreover, if a with this property exists, it
is also easy to see that the derivative of is given by If we now
note that the formula does not involve quotients nor
limits, we can apply the same definition to super functions, for which there generally do
not exist quotients (because of nilpotent elements in nor does the natural topology
(the DeWitt topology) admit unique limits (being non Hausdorff). Based on this idea,
smooth functions on super domains with even coordinates and odd coordinates
are defined. It is shown, using the body map B defined in chapter II, that these smooth
functions are in bijection with ordinary smooth real-valued functions of real variables,
multiplied by antisymmetric polynomials in variables. This result is usually taken as the
definition of smooth super functions; here it is a consequence of a more general definition,
a definition which applies as well to ordinary functions as to super functions. The last two
sections of chapter III are devoted to copying the standard definition of manifolds in terms
of charts and transition functions to the case in which the transition functions are super
smooth functions.

In chapter IV the general theory of fiber and vector bundles is developed. The first two
sections deal with general fiber bundles and how to construct new ones out of given ones.
The next two sections deal with vector bundles and how to generalize the construction
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of new to the setting of vector bundles. In section 5 the behavior of the
operation of taking sections under the various operations one can perform on
is considered. In section 6 the exterior algebra of a (dual) bundle is discussed in more
detail, as well as the pull-back of sections. The main purpose of sections 5 and 6 is
to provide a rigorous justification for operations everybody performs without thinking
twice. In section 7 one finds a proof of part of the Serre-Swann theorem that the module of
sections of a vector bundle is a finitely generated projective module over the ring of smooth
functions on the base manifold. The proof of this result needs the notion of a metric on a
free graded a notion whose definition is subtly different from what one would
expect. These results are not used elsewhere, but they are needed to complete the proofs
of statements given in section 5. The last section in chapter IV on Batchelor’s theorem
merits ample attention. This theorem says that any supermanifold is “isomorphic” to an
ordinary vector bundle over an ordinary manifold, or, stated differently, for any smooth
supermanifold there exists an atlas in which the transition functions are of the special
form: even coordinates depend on even coordinates only, and odd coordinates depend in
a linear way on odd coordinates. The proof is “constructive” in that it provides an explicit
algorithm to compute such an atlas given an arbitrary atlas. The quotes are needed because
this algorithm requires a partition of unity on the underlying ordinary manifold.

Chapter V treats the standard machinery of differential geometry. In section 1 the
tangent bundle is defined and it is shown that sections of it, called vector fields, are
equivalent to derivations of the ring of smooth functions. In section 2 the tangent map is
defined, which in turn gives rise to the notions of immersion and embedding. In section
3 the relationship between the tangent map and the derivative of a map are studied in
more detail. It turns out that in the super case this is in general not a 1–1 correspondence.
Generalizing the notion of the derivative of an function to vector bundle valued
functions, a necessary and sufficient condition is given for a vector bundle to be trivial as
a vector bundle. Here one also can find an example of a vector bundle which is trivial as
fiber bundle, but not as vector bundle. Sections 4 and 5 then concentrate on the notion of
the flow of a vector field and the well known proposition that two vector fields commute
if and only if their flows commute. For odd vector fields this amounts to saying that an
odd vector field is integrable if and only if its auto commutator is zero. Section 6 treats
Frobenius’ theorem on integrability of subbundles of the tangent bundle, the notion of
integral manifolds and the existence of leaves for a foliation. In section 7 the calculus of
(exterior differential) is given, including the definition of the Lie derivative and
its relation with the flow of a vector field. Finally in section 8 an elementary proof is given
of the fact that the de Rham cohomology of a supermanifold is the same as that of the
underlying ordinary manifold (its body).

Chapter VI treats the basic facts about super Lie groups and their associated super
Lie algebras. In section 1 one finds the basic definition of a super Lie group and the
construction of the associated super Lie algebra. The exponential map from the super
Lie algebra to the super Lie group is defined in section 2. There one also finds the proof
that it intertwines a homomorphism of super Lie groups and its induced morphism on the
associated super Lie algebras. Section 3 is rather technical and computes the derivative of
the exponential map. Section 4 deals with the relationship between Lie subgroups and Lie
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subalgebras, whereas section 5 treats homogeneous supermanifolds. Section 6 is again
technical and proves that any smooth action can be transformed into a pseudo effective
action. The last section gives a geometric proof that to each finite dimensional super Lie
algebra corresponds a super Lie group.

Chapter VII is more advanced and discusses the general concept of a connection on a
fiber bundle. Sections 1 and 8 are technical and provide the necessary theory of vector
valued and vector bundle valued differential forms. In section 2 the general concept of
an Ehresmann connection is introduced, as well as the more restrictive notion of FVF
connection, which is an Ehresmann connection determined by the fundamental vector
fields of the structure group on the typical fiber. FVF connections have nice properties:
they are defined on any fiber bundle, they include the standard examples of connections
such as the (principal) connection on a principal fiber bundle and linear connections on
vector bundles, and they always allow parallel transport. In sections 3 and 4 the particular
case of an FVF connection on a principal fiber bundle is studied, which includes the
description by a connection 1-form, the exterior covariant derivative and a discussion
about the curvature 2-form. In section 5 it is shown that any FVF connection can be
seen as induced by an FVF connection on a principal fiber bundle. Sections 6 and 7
treat the notion of a covariant derivative on a vector bundle and prove that it is equivalent
to an FVF connection. It includes the proof that the covariant derivative measures how
far away a (local) section is from being horizontal. In sections 9 and 10 the covariant
derivative on a vector bundle is generalized to vector bundle valued differential forms
and it is shown how the exterior covariant derivative (on a principal fiber bundle), the
ordinary exterior derivative of differential forms and the generalized covariant derivative
(on a vector bundle) are intimately related.

This book is written in a logical order, meaning that a proof of a statement never uses
future results and meaning that related subjects are put together. This is certainly not the
most pedagogical way to present the subject, but it avoids the risk of circular arguments.
As a consequence, the novice reader should not read this book in a linear order. For a first
reading, one can easily skip sections 7 and 8 of chapter I. From chapter IV one should
certainly read sections 1–3, but coming back for sections 4–6 (and then only superficially)
just before starting to read section 6 of chapter V. The reader who already has a working
knowledge of ordinary manifold theory need not read all sections with the same attention
and at a first reading (s)he can even skip chapter IV completely.

One final word on terminology: in this introduction I have systematically used the
adjective super. On the other hand, in the main text I never use this adjective, but rather
the prefix The reason to do so is that one should regard this theory not as opposed
to ordinary differential geometry (super versus non-super), but more as a theory with a
parameter indicating over which ring it is developed.

In preparing chapters I–VI I have relied heavily on the first three chapters of F. Warner’s
classic “Foundations of Differentiable Manifolds and Lie Groups,”, while chapter VII is
based on H. Pijls’ review article “The Yang-Mills equations.” Other sources of inspiration
have been the first volume of M. Spivak’s “A Comprehensive Introduction to Differential
Geometry” and “Les Tenseurs” of L. Schwartz. During the years it took me to write this



Preface xiii

book, I have benefitted from the hospitality of the following three institutions: MSRI
(Berkeley, USA), CPT (Marseille, France) and LNCC (Rio de Janeiro, Brazil). Special
thanks are due to P. Bongaarts for some excellent suggestions concerning chapter I and
to V. Thilliez who helped me with [III. 1.12]. Finally, I am convinced I got the idea for
[IV.7.3] from a paper by S. Sternberg, but I can no longer find the source.

Lille, january 2004



Chapter I

commutative linear algebra

Linear algebra is concerned with the study of vector spaces over the real numbers (or more
generally over a field) and linear maps. A standard course on linear algebra more or less
starts with the introduction of the concept of a basis. Immediately afterwards one usually
restricts attention to finite dimensional vector spaces. Next on the list is the concept of
a subspace and with that notion one derives some elementary properties of linear maps.
Then one introduces bilinear maps, with a scalar product as the most important example.
This gives rise to the notions of orthogonal basis, orthogonal linear map, and orthogonal
subspaces, eventually followed by a classification of quadrics. More advanced courses
treat the notions of multilinear maps, tensor products, and exterior powers. Algebras, and
in particular Lie algebras, are usually treated separately.

Besides analysis, these concepts in linear algebra form the basis of differential geom-
etry. One could even say that differential geometry is the interplay between analysis and
linear algebra. Algebraic geometry is closely related to differential geometry, but hardly
relies on analysis; it is mainly concerned with algebraic structures. For that it needs
a generalization of linear algebra in which a vector space over a field is replaced by a
module over a commutative ring with unit. Commutative algebra is the theory which plays
in algebraic geometry the same role as linear algebra does in differential geometry. In
commutative algebra the notion of basis more or less disappears, but subspaces, tensor
products, and exterior powers can still be defined.

In supergeometry one replaces the field of real numbers, not by a commutative ring,
but by a graded commutative ring. Since such a ring is not commutative, commutative
algebra does not apply. In this context, graded means i.e., the ring and all
modules are a direct sum of two subspaces, the even and odd parts. In this first chapter
we look at an even more general situation. We denote by an arbitrary abelian group
and we denote by an arbitrary commutative ring with unit (i.e., a ring
which splits as a direct sum of subspaces indexed by and satisfying conditions how these
subspaces commute). We will show that all concepts of linear algebra that are important

1



2 Chapter I. commutative linear algebra

for differential geometry can be generalized to commutative linear algebra, i.e.,
to the theory of

1. COMMUTATIVE RINGS AND

In this first section we give the definitions of the principal objects of this book:
commutative algebras and are a special kind
of a fact that will greatly facilitate constructions of new

one of which is discussed in this section: the submodule.

1.1 Definition. Given abelian groups and H, a map
is called if for all and for all we have:

1.2 Definition. Let G be an abelian group and let be a family of subgroups. One
writes if and only if for each element there exist unique
only finitely many of them non-zero, such that it is called the (unique)
decomposition of into

1.3 Definitions. Let be a ring. A left module over the ring (or a left is
an abelian group E equipped with a map that is bi-additive and satisfies

This map is called left multiplication by elements of and (as is usual) we will omit the
symbol if no confusion is possible and just write or for If contains
a unit we also require that for all In a similar way, a right
is an abelian group E equipped with a map (right multiplication) that is
bi-additive and satisfies And as before, if no confusion is
possible we will just write or for As for left if contains a
unit we require that for all Since is in general not commutative,
the notions of left and right do not coincide.

An is an abelian group E which is at the same time a left and a right
such that the left and right actions commute, i.e., for all

which can also be written as
A subset F of a left/right E is called a submodule if F is a subgroup with

respect to the additive structure of E such that It follows that F, with the
induced multiplication of is itself a left/right


