Adam J. Schwartz • Mukul Kumar • Brent L. Adams David P. Field *Editors*

Electron Backscatter Diffraction in Materials Science

Second Edition

Electron Backscatter Diffraction in Materials Science

Second Edition

Adam J. Schwartz · Mukul Kumar · Brent L. Adams · David P. Field Editors

Electron Backscatter Diffraction in Materials Science

Second Edition

Editors Adam J. Schwartz Lawrence Livermore National Laboratory Physical and Life Sciences Directorate 7000 East Avenue Livermore CA 94550 USA schwartz6@llnl.gov

Brent L. Adams Department of Mechanical Engineering Brigham Young University Provo UT 84602 455B Crabtree Technology Building USA b_l_adams@byu.edu Mukul Kumar Lawrence Livermore National Laboratory Physical and Life Sciences Directorate 7000 East Avenue Livermore CA 94550 USA kumar3@llnl.gov

David P. Field School of Mechanical and Materials Engineering Washington State University Pullman WA 99164-2920 Dana 239E USA dfield@wsu.edu

First hard cover printing 2000, Kluwer Academic / Plenum Publishers

ISBN 978-0-387-88135-5 DOI 10.1007/978-0-387-88136-2 e-ISBN 978-0-387-88136-2

Library of Congress Control Number: 2009920955

© Springer Science+Business Media, LLC 2009

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

springer.com

Contents

1	Pres	sent State of Electron Backscatter Diffraction		
	and	Prospective Developments		1
	Rob	ert A. Schwarzer, David P. Field, Brent L. Adams,		
	Muk	kul Kumar, and Adam J. Schwartz		
	1.1	Introduction		1
	1.2	Generation and Interpretation of Electron Backscatter		
		Diffraction Patterns		2
	1.3	Experimental Set-Up of an EBSD System		3
	1.4	The Components of an Automated EBSD System		4
		1.4.1 The Pattern Acquisition Device		4
		1.4.2 Mechanical Stage and Digital		
		Beam Scanning		5
	1.5	Spatial Resolution		7
	1.6	SEM Specifications for Good EBSD Performance		9
	1.7	The Radon or Hough Transformation for Band Localiza	tion	11
	1.8	Indexing		12
	1.9	Fast EBSD		13
	1.10) Ion Blocking Patterns		15
	1.11	1 Conclusions		19
2	Dvn	namical Simulation of Electron Backscatter		
Diffraction Patterns			21	
	Aim	no Winkelmann		
	2.1	Introduction		21
	2.2	Model of Electron Backscatter Diffraction		21
	2.3	Dynamical Electron Diffraction in EBSD		22
		2.3.1 Dynamical Electron Diffraction in EBSD		22
		2.3.2 Dynamical Electron Diffraction in EBSD		23
		2.3.3 Dynamical Electron Diffraction in EBSD		24
	2.4	Applications		25
		2.4.1 A Real-Space View of EBSD		25
		2.4.2 Full Scale Simulation of EBSD Patterns		27
		2.4.3 The Influence of the Energy Spectrum of the		
		Backscattered Electrons		28
		2.4.4 Dynamical Effects of Anisotropic Backscatterin	g	30
	2.5	Summary		32

3	Rep	resentations of Texture
	Jeren	ny K. Mason and Christopher A. Schuh
	3.1	Introduction
	3.2	Rotations and Orientations
		3.2.1 Defining a Rotation
		3.2.2 Defining an Orientation
	3.3	Pole Figures 38
	3.4	Discrete Orientations
		3.4.1 Axis-Angle Parameters 41
		3.4.2 Rodrigues Vectors
		3.4.3 Quaternions
		3.4.4 Euler Angles
	3.5	Orientation Distribution Functions
		3.5.1 Circular Harmonics
		3.5.2 Spherical Harmonics
		3.5.3 Hyperspherical Harmonics
		3.5.4 Generalized Spherical Harmonics
		3.5.5 Symmetrized Harmonics
	3.6	Conclusion
4	Ene	ray Filtering in FRSD 53
-		yn Fades Andrew Deal Abhishek Bhattacharyya
	and '	Teinal Hooghan
	4 1	Introduction 53
	4.2	Background 53
	43	Energy Filters 54
	4.4	Operating the Filter 56
	45	Farly Results 57
	4.6	Patterns at Different Energies 60
	47	Localization of the Signal
	4.8	Future Energy Filters in EBSD 62
	49	Summary and Conclusions 62
	1.2	
5	Spho	erical Kikuchi Maps and Other Rarities
	Aust	in P. Day
	5.1	Introduction
	5.2	Electron Backscatter Patterns
	5.3	Spherical Kikuchi Maps
	5.4	EBSP Detectors
	5.5	EBSP Imaging and Uniformity
	5.6	EBSP Simulation
	5.7	Spherical Kikuchi Maps from EBSPs
	5.8	Kikuchi Band Profiles
	5.9	Spherical Kikuchi Map Inversion
	5.10	Uses for Spherical Kikuchi Maps 75
	5.11	Colour Orientation Contrast Images
	5.12	STEM in the SEM
	5.13	Unusual Features in EBSPs

6	Арр	lication of Electron Backscatter Diffraction			
	to P	hase Identification	81		
	Bass	em El-Dasher and Andrew Deal			
	6.1	Introduction	81		
	6.2	Considerations for Phase ID with EBSD	82		
	6.3	Case Studies	84		
		6.3.1 Simultaneous EBSD/EDS Phase Discrimination	85		
		6.3.2 Distinguishing γ and γ' in Ni Superalloys	86		
		6.3.3 Volume Fraction Determination in a Multiphase Alloy	89		
7	Phase Identification Through Symmetry Determination				
	in E	BSD Patterns	97		
	Davi	d J. Dingley and S.I. Wright			
	7.1	Introduction	97		
	7.2	Basis of the Phase Identification Method	97		
	7.3	Determination of the Crystal Unit Cell	98		
	7.4	Discovering the Lattice Symmetry	100		
	7.5	Re-Indexing the Pattern According to the Discovered			
		Crystal Class	101		
	7.6	Examples	102		
		7.6.1 Case 1, A Cubic Crystal	102		
		7.6.2 Case 2, A Hexagonal Crystal	104		
		7.6.3 Case 3, A Trigonal Crystal	104		
	7.7	Discussion	106		
8	Thr	ee-Dimensional Orientation Microscopy by Serial			
	Sect	ioning and EBSD-Based Orientation Mapping			
	in a	FIB-SEM	109		
	Stefa	n Zaefferer and Stuart I. Wright			
	8.1	Introduction	109		
	8.2	The Geometrical Set-Up for 3D Characterisation in a FIB-SEM .	110		
	8.3	Automatic 3D Orientation Microscopy	113		
	8.4	Software for 3D Data Analysis	113		
	8.5	Application Examples	114		
		8.5.1 The 3D Microstructure and Crystallography of			
		Pearlite Colonies	114		
		8.5.2 Microstructure of "Nanocrystalline" NiCo Deposits	115		
	8.6	Discussion	119		
		8.6.1 Accuracy and Application Limits	119		
		8.6.2 Materials Issues	120		
	8.7	Conclusions	120		

9	Collection, Processing, and Analysis of Three-Dimensional	
	EBSD Data Sets	123
	Michael A. Groeber, David J. Rowenhorst,	
	and Michael D. Uchic	
	9.1 Introduction	123
	9.2 Data Collection	123
	9.3 Processing Strategies	124
	9.3.1 Registration and Alignment of Sections	124
	9.3.2 Segmentation of Grains	126
	9.3.3 Clean-Up Routines	127
	9.4 Analysis Capabilities	129
	9.4.1 Morphological Descriptors	129
	9.4.2 Crystallographic Descriptors	133
	9.5 Summary	135
10	3D Reconstruction of Digital Microstructures	139
	Stephen D. Sintay, Michael A. Groeber, and Anthony D. Rollett	
	10.1 Motivation	139
	10.2 Background	139
	10.2.1 2D–3D Inference	139
	10.2.2 3D Polycrystal Microstructure Generation	140
	10.3 Data Collection and Analysis	140
	10.3.1 Data Sources	140
	10.3.2 Identifying Features	141
	10.3.3 Statistical Description of Features	141
	10.4 Methods for 3D Structure Inference	141
	10.4.1 Monte Carlo-Based Histogram Fitting	143
	10.4.2 Observation-Based Domain Constraint	145
	10.5 Generation of 3D Structure	147
	10.5.1 Packing of Ellipsoids	147
	10.5.2 Relaxation of Boundaries	149
	10.6 Quality Analysis	149
	10.6.1 Size Distribution Comparison	149
	10.6.2 Shape Distribution Comparison	149
	10.6.3 Neighborhood Comparison	151
	10.6.4 Boundary Structure Comparison	151
	10.7 Thoughts on Current Conditions and Future work	151
11	Direct 3D Simulation of Plastic Flow from EBSD Data 1	155
	Nathan R. Barton, Joel V. Bernier, Ricardo A. Lebensohn,	
	and Anthony D. Rollett	
	11.1 Introduction	155
	11.2 Material and Microstructural Model	156
	11.2.1 Three-Dimensional Microstructure Generation 1	157
	11.2.2 Micromechanical Model	158
	11.2.3 Finite Element Model	159
	11.3 Simulation Results	159
	11.4 Directions for Further Computational Development	162
	11.5 Conclusions	103

12	First-Order Microstructure Sensitive Design Based			
	on Volume Fractions and Elementary Bounds			
	Surya R. Kalidindi, David T. Fullwood, and Brent L. Adams			
	12.1 Introduction	169		
	12.2 Quantification of Microstructure	170		
	12.3 Microstructure Sensitive Design Framework	170		
	12.4 Property Closures	172		
	.12			
13	Second-Order Microstructure Sensitive Design			
	Using 2-Point Spatial Correlations	177		
	David T. Fullwood, Surya R. Kalidindi, and Brent L. Adams			
	13.1 Introduction	177		
	13.2 Definition and Properties of the 2-Point Correlation Functions	178		
	13.2.1 Boundary Conditions	179		
	13.2.2 Properties of the 2-Point Functions	179		
	13.2.3 Visualization of the 2-Point Functions	179		
	13.2.4 Metrics from 2-Point Correlations	180		
	13.2.5 Collecting 2-Point Correlations from Material Samples .	180		
	13.3 Structure Property Relations	181		
	13.3.1 Localization Tensors	182		
	13.3.2 Effective Tensors	184		
	13.4 Microstructure Design	186		
	e			
14	Combinatorial Materials Science and EBSD: A High			
14	Combinatorial Materials Science and EBSD: A High Throughput Experimentation Tool	189		
14	Combinatorial Materials Science and EBSD: A High Throughput Experimentation Tool	189		
14	Combinatorial Materials Science and EBSD: A HighThroughput Experimentation ToolKrishna Rajan14.1 Introduction	189 189		
14	Combinatorial Materials Science and EBSD: A HighThroughput Experimentation Tool	189 189 189		
14	Combinatorial Materials Science and EBSD: A High Throughput Experimentation Tool Krishna Rajan 14.1 Introduction 14.2 Introduction to Combinatorial Methods 14.2.1 High Throughput EBSD Screening	189 189 189 190		
14	Combinatorial Materials Science and EBSD: A HighThroughput Experimentation Tool	189 189 189 190 194		
14	Combinatorial Materials Science and EBSD: A High Throughput Experimentation Tool Krishna Rajan 14.1 Introduction 14.2 Introduction to Combinatorial Methods 14.2.1 High Throughput EBSD Screening 14.2.2 Informatics and Data 14.3 Summary	189 189 189 190 194 196		
14	Combinatorial Materials Science and EBSD: A High Throughput Experimentation Tool Krishna Rajan 14.1 Introduction 14.2 Introduction to Combinatorial Methods 14.2.1 High Throughput EBSD Screening 14.2.2 Informatics and Data 14.3 Summary Crain Boundary Networks	 189 189 189 190 194 196 201 		
14	Combinatorial Materials Science and EBSD: A High Throughput Experimentation Tool Krishna Rajan 14.1 Introduction 14.2 Introduction to Combinatorial Methods 14.2.1 High Throughput EBSD Screening 14.2.2 Informatics and Data 14.3 Summary Summary Strain Boundary Networks Bryan W Reed and Christopher A Schuh	 189 189 189 190 194 196 201 		
14 15	Combinatorial Materials Science and EBSD: A High Throughput Experimentation Tool Krishna Rajan 14.1 Introduction 14.2 Introduction to Combinatorial Methods 14.2.1 High Throughput EBSD Screening 14.2.2 Informatics and Data 14.3 Summary Grain Boundary Networks Bryan W. Reed and Christopher A. Schuh 15.1 Introduction	 189 189 189 190 194 196 201 		
14 15	Combinatorial Materials Science and EBSD: A High Throughput Experimentation Tool Krishna Rajan 14.1 Introduction 14.2 Introduction to Combinatorial Methods 14.2.1 High Throughput EBSD Screening 14.2.2 Informatics and Data 14.3 Summary Grain Boundary Networks Bryan W. Reed and Christopher A. Schuh 15.1 Introduction 15.2 Measurement and Classification of Local Network Elements	 189 189 189 190 194 196 201 201 202 		
14	Combinatorial Materials Science and EBSD: A High Throughput Experimentation Tool Krishna Rajan 14.1 Introduction 14.2 Introduction to Combinatorial Methods 14.2.1 High Throughput EBSD Screening 14.2.2 Informatics and Data 14.3 Summary Grain Boundary Networks Bryan W. Reed and Christopher A. Schuh 15.1 Introduction 15.2 Measurement and Classification of Local Network Elements	 189 189 190 194 196 201 201 202 202 202 		
14	Combinatorial Materials Science and EBSD: A High Throughput Experimentation Tool Krishna Rajan 14.1 Introduction 14.2 Introduction to Combinatorial Methods 14.2.1 High Throughput EBSD Screening 14.2.2 Informatics and Data 14.3 Summary Grain Boundary Networks Bryan W. Reed and Christopher A. Schuh 15.1 Introduction 15.2 Measurement and Classification of Local Network Elements 15.2.1 General Definitions for Single Boundaries 15.2.2 Structures with More than One Boundary	 189 189 190 194 196 201 202 202 203 		
14	Combinatorial Materials Science and EBSD: A High Throughput Experimentation Tool Krishna Rajan 14.1 Introduction 14.2 Introduction to Combinatorial Methods 14.2.1 High Throughput EBSD Screening 14.2.2 Informatics and Data 14.3 Summary Grain Boundary Networks Bryan W. Reed and Christopher A. Schuh 15.1 Introduction 15.2 Measurement and Classification of Local Network Elements 15.2.2 Structures with More than One Boundary 15.3 Geometry of the Network Structure	 189 189 189 190 194 196 201 201 202 202 203 204 		
14	Combinatorial Materials Science and EBSD: A High Throughput Experimentation Tool Krishna Rajan 14.1 Introduction 14.2 Introduction to Combinatorial Methods 14.2.1 High Throughput EBSD Screening 14.2.2 Informatics and Data 14.3 Summary Grain Boundary Networks Bryan W. Reed and Christopher A. Schuh 15.1 Introduction 15.2 Measurement and Classification of Local Network Elements 15.2.1 General Definitions for Single Boundaries 15.2.2 Structures with More than One Boundary 15.3 L Percolation Measures of the Grain Boundary Network	 189 189 190 194 196 201 202 202 203 204 205 		
14	Combinatorial Materials Science and EBSD: A High Throughput Experimentation Tool Krishna Rajan 14.1 Introduction 14.2 Introduction to Combinatorial Methods 14.2.1 High Throughput EBSD Screening 14.2.2 Informatics and Data 14.3 Summary Grain Boundary Networks Bryan W. Reed and Christopher A. Schuh 15.1 Introduction 15.2 Measurement and Classification of Local Network Elements 15.2.2 Structures with More than One Boundary 15.3 Geometry of the Network Structure 15.3.1 Percolation Measures of the Grain Boundary Network	 189 189 190 194 196 201 201 202 203 204 205 206 		
14	Combinatorial Materials Science and EBSD: A High Throughput Experimentation Tool Krishna Rajan 14.1 Introduction 14.2 Introduction to Combinatorial Methods 14.2.1 High Throughput EBSD Screening 14.2.2 Informatics and Data 14.3 Summary Grain Boundary Networks Bryan W. Reed and Christopher A. Schuh 15.1 Introduction 15.2 Measurement and Classification of Local Network Elements 15.2.2 Structures with More than One Boundary 15.3 Geometry of the Network Structure 15.3.1 Percolation Measures of the Grain Boundary Network 15.3.2 Crystallographic Constraints	 189 189 190 194 196 201 201 202 203 204 205 206 208 		
14	Combinatorial Materials Science and EBSD: A High Throughput Experimentation Tool Krishna Rajan 14.1 Introduction 14.2 Introduction to Combinatorial Methods 14.2.1 High Throughput EBSD Screening 14.2.2 Informatics and Data 14.3 Summary Grain Boundary Networks Bryan W. Reed and Christopher A. Schuh 15.1 Introduction 15.2 Measurement and Classification of Local Network Elements 15.2.1 General Definitions for Single Boundaries 15.2.2 Structures with More than One Boundary 15.3.1 Percolation Measures of the Grain Boundary Network 15.3.2 Crystallographic Constraints 15.4 L Commercia Avarraging up Demolation Theory	 189 189 190 194 196 201 201 202 203 204 205 206 208 209 		
14	Combinatorial Materials Science and EBSD: A High Throughput Experimentation Tool Krishna Rajan 14.1 Introduction 14.2 Introduction to Combinatorial Methods 14.2.1 High Throughput EBSD Screening 14.2.2 Informatics and Data 14.3 Summary Grain Boundary Networks Bryan W. Reed and Christopher A. Schuh 15.1 Introduction 15.2 Measurement and Classification of Local Network Elements 15.2.1 General Definitions for Single Boundaries 15.2.2 Structures with More than One Boundary 15.3 Geometry of the Network Structure 15.3.1 Percolation Measures of the Grain Boundary Network 15.3.2 Crystallographic Constraints 15.4 Microstructure-Property Connections 15.4.1 Composite Averaging vs. Percolation Theory	 189 189 189 190 194 196 201 201 202 203 204 205 206 208 209 211 		
14	Combinatorial Materials Science and EBSD: A High Throughput Experimentation Tool Krishna Rajan 14.1 Introduction 14.2 Introduction to Combinatorial Methods 14.2.1 High Throughput EBSD Screening 14.2.2 Informatics and Data 14.3 Summary 14.3 Summary Grain Boundary Networks Bryan W. Reed and Christopher A. Schuh 15.1 Introduction 15.2 Measurement and Classification of Local Network Elements 15.2.1 General Definitions for Single Boundaries 15.2.2 Structures with More than One Boundary 15.3 Geometry of the Network Structure 15.3.1 Percolation Measures of the Grain Boundary Network 15.3.2 Crystallographic Constraints 15.4 Microstructure-Property Connections 15.4.1 Composite Averaging vs. Percolation Theory 15.4.2 Crystallographic Correlations	 189 189 189 190 194 196 201 202 203 204 205 206 208 209 211 212 		

16	Measurement of the Five-Parameter Grain Boundary	
	Distribution from Planar Sections	215
	Gregory S. Rohrer and Valerie Randle	
	16.1 Introduction: Grain Boundary Planes and Properties	215
	16.2 Serial Sectioning	216
	16.3 Single-Surface Trace Analysis	217
	16.4 Five-Parameter Stereological Analysis	218
	16.4.1 Parameterization and Discretization of the Space	210
	of Grain Boundary Types	218
	16.4.2 Measurement of the Grain Boundary	210
	Characterization Distribution	210
	16.4.2 Derformance of the Starcelogical Analysis	219
	10.4.5 Ferroritance of the Stereological Analysis	221
	10.4.4 Comparison GBCDs Measured Stereologically	222
	and by Serial Sectioning in the Dual Beam FIB	223
	16.5 Examples of Five-Parameter Analyses	224
17	Strain Mapping Using Electron Backscatter Diffraction	231
	Angus J. Wilkinson, David J. Dingley, and Graham Meaden	
	17.1 Introduction	231
	17.1.1. The Need for Local Strain Assessment	231
	17.1.2 Competing Strain Manning Techniques	231
	17.1.3 Review of Applications of EBSD	201
	to Analysis of Flastic Strains	232
	17.2 Cross-Correlation-Based Analysis	252
	of ERCD Datterns	224
	17.2.1. Geometry: Linking Dettern Shifts to Strain	234
	17.2.1 Geometry. Linking Fattern Shifts to Strain	234
	17.2.2 Pattern Shift Measurement	200
		237
	17.2.4 Inustrative Applications	239
		247
18	Mapping and Assessing Plastic Deformation Using EBSD	251
	Luke N. Brewer, David P. Field, and Colin C. Merriman	
	18.1 Plastic Deformation Effects on the EBSD Pattern and	
	Orientation Map	251
	18.2 Pattern Rotation Approaches	253
	18.2.1 Mapping Orientations and Misorientations	253
	18.2.2 Average Misorientation Approaches	255
	18.2.3 Measurement and Calculation	
	of GND Densities	258
10	An alasia of Defermention Standards in ECC Materials	
19	Analysis of Deformation Structures in FCC Materials	2(2
		263
	Oleg V. Mishin, Andrew Godfrey, and Dorte Juul Jensen	
	19.1 Introduction	263
	19.2 Orientation Noise in EBSD Data	265
	19.2.1 A Quantitative Description of Orientation Noise	265
	19.2.2 Postprocessing Orientation Filtering Operations	266
	19.3 Quantitative TEM–EBSD Comparison	268
	19.4 Heterogeneity in Microstructural Refinement	271

20 Application of EBSD Methods to Severe Plastic Deformation (SPD) and Related Processing Methods 2 Terry R. McNelley, Alexandre P. Zhilyaev, Srinivasan 2 Swaminathan, Jianqing Su, and E. Sarath Menon 2 20.1 Introduction 2 20.2 Microstructures During the Initial ECAP Pass 2 20.3 Microstructures Developed by Machining 2 20.4 Grain Refinement During FSP 2 20.5 Conclusions 2 21 Applications of EBSD to Microstructural Control in	277 278 282 284 288 288 288
20.1 Introduction 2 20.2 Microstructures During the Initial ECAP Pass 2 20.3 Microstructures Developed by Machining 2 20.4 Grain Refinement During FSP 2 20.5 Conclusions 2 21 Applications of EBSD to Microstructural Control in	277 278 282 284 284 288 288
21 Applications of EBSD to Microstructural Control in	291
Friction Stir Welding/Processing	
Sergey Mironov, Yutaka S. Sato, and Hiroyuki Kokawa 21.1 Introduction 2 21.2 Brief Explanations of FSW/P Terminology 2 21.3 Microstructural Evolution 2 21.4 Material Flow 2 21.5 Structure-Properties Relationship 2 21.6 Summary and Future Outlook 2	291 292 292 296 298 298
22 Characterization of Shear Localization and Shock Damage with EBSD	301
 22.1 Introduction	301 302 302 306 307 309 310 313
22.4 Conclusions	313
23 Ayman A. Salem 23.1 Introduction 23.2 Microstructure of α/β Titanium Alloys 23.3 Texture of Ti-6Al-4V 23.3.1 Separation of Primary and Secondary Alpha Texture 23.2 Approximation of Primary and Secondary Alpha Texture	317 317 317 318 319
 23.3.2 EBSD + BSE Imaging Technique	320 320 320 320 321
 23.4.3 Chemical Composition Maps (EDS) 23.5 Industrial Application: Controlling Texture During Hot-Rolling of Ti-6Al-4V 	322

	23.5.1 Microstructure Evolution	323
	23.5.2 Overall Texture Evolution	323
	23.5.3 Primary-Alpha (α_p) Textures	324
	23.5.4 Secondary-Alpha (α_s) Texture	325
	23.6 Industrial Application: Controlling Texture During	
	Hot-Rolling of Ti-6Al-4V	326
24	A Review of In Situ EBSD Studies	329
	24.1 Introduction	329
	24.2 In Situ Postmortem Experiments	330
	24.3 Deformation Stage Experiments	331
	24.4 Heating Stage Experiments	332
	24.4.1 Phase Transformation	332
	24.4.2 Recrystallization and Grain Growth	333
	24.5 Combined Heating and Tensile Stage Experiments	335
	24.6 Conclusions	335
25	Electron Backscatter Diffraction in Low Vacuum Conditions	339
	Bassem S. El-Dasher and Sharon G. Torres	
	25.1 Introduction	339
	25.2 Considerations for Low Vacuum EBSD	340
	25.3 Example Applications	341
	25.3.1 Microstructural Analysis	
	of AlN-TiB ₂ Ceramic Composite $\ldots \ldots \ldots \ldots \ldots \ldots$	341
	25.3.2 Characterization of CaHPO ₄ \cdot 2H ₂ O Single Crystals	342
26	EBSD in the Earth Sciences: Applications, Common	
	Practice, and Challenges	345
	David J. Prior, Elisabetta Mariani, and John Wheeler	
	26.1 Development of EBSD in Earth Sciences	345
	26.2 Current Practice, Capabilities, and Limitations	346
	26.2.1 Range of Materials and Preparation	346
	26.2.2 Speed of Data Collection	347
	26.2.3 Spatial Resolution	347
	26.2.4 Misindexing	348
	26.2.5 Polyphase Samples	350
	26.3 Application of EBSD in Earth Sciences	351
	26.3.1 Rock Deformation and Solid Earth Geophysics	352
	26.3.2 Metamorphic Processes	355
	26.3.3 Meteorites	356
	26.3.4 Other Areas	356
	26.4 Conclusions	357

27	Orientation Imaging Microscopy in Research	
	on High Temperature Oxidation	361
	Bae-Kyun Kim and Jerzy A. Szpunar	
	27.1 Introduction	361
	27.2 High Temperature Oxidation	362
	27.3 Experimental Procedure	363
	27.3.1 Oxidation of Samples and Oxide Formation	363
	27.3.2 Sample Preparation and Geometry in OIM	364
	27.3.3 Microstructure and Texture Measurement	365
	27.3.4 Oxidation of Low Carbon Steel	365
	27.4 Results and Discussion	368
	27.4.1 Grain Growth in Iron Oxide	368
	27.4.2 Effect of the Oxidation Process on Microstructure	371
	27.4.3 Oxidation of Pure Iron	373
	27.5 Cracks and Defects	384
	27.6 Conclusion	390
Inde	х	395

Contributors

Brent L. Adams Department of Mechanical Engineering, Brigham Young University, 455B CTB, Provo, UT 84602-4201, USA, b_l_adams@byu.edu

Nathan R. Barton Lawrence Livermore National Laboratory, L-129, 7000 East Avenue, Livermore, CA 94550, USA, barton22@llnl.gov

Joel V. Bernier Lawrence Livermore National Laboratory, L-129, 7000 East Avenue, Livermore, CA 94550, USA, bernier2@llnl.gov

Abhishek Bhattacharyya 1 Becton Drive, Franklin Lakes, NJ 07417 USA, abhatt72@yahoo.com

John F. Bingert Materials Science and Technology Division, Los Alamos National Laboratory, MST-8, MS G755, Los Alamos, NM 87545, USA, bingert@lanl.gov

Luke N. Brewer Sandia National Laboratories, New Mexico, PO Box 5800 MS 1411, Albuquerque, NM 87123-1411, USA, lnbrewe@sandia.gov

Ellen K. Cerreta Los Alamos National Laboratory, MST-8, MS G755, Los Alamos, NM 87545, USA, ecerreta@lanl.gov

Austin P. Day Aunt Daisy Scientific Ltd., Durlow, Dixton Road, Monmount, Gwent NP25 3PP; KE Developments, The Mount, Toft, Cambridge CB23 2RL, United Kingdom, auntdaisy@btinternet.com

Andrew Deal GE Global Research, One Research Circle, Niskayuna, NY 12309, USA, deal@research.ge.com

David J. Dingley H. H. Wills Physics Laboratory, Bristol University, Tyndall Avenue, Bristol BS8 1TL, United Kingdom, djdingley@hotmail.com

Alwyn Eades Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195, USA, jae5@lehigh.edu

Bassem S. El-Dasher Lawrence Livermore National Laboratory, L-367, 7000 East Avenue, Livermore, CA 94550, USA, eldasher2@llnl.gov

David P. Field School of Mechanical and Materials Engineering, Washington State University, Dana 239E, Pullman, WA 99164-2920, USA, dfield@wsu.edu

David T. Fullwood Department of Mechanical Engineering, Brigham Young University, 435 CTB, Provo, UT 84602-4201, USA, dfullwood@byu.edu

Andy Godfrey Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China, awgodfrey@mail.tsinghua.edu.cn

Michael A. Groeber Wright Patterson Air Force Base, 2210 Tenth St. Building 655 Room 110, WPAFB, OH 45433, USA, michael.groeber.ctr@wpafb.af.mil

Tejpal Hooghan Texas Instruments Incorporated, 13536 North Central Expressway, Dallas, TX 75243, USA, thooghan@ti.com

Dorte Juul Jensen Risø National Laboratory for Sustainable Energy, Materials Research Department, Center for Fundamental Research: Metal Structures in Four Dimensions, Technical University of Denmark, Building 228, P.O. Box 49, DK-4000 Roskilde, Denmark, dorte.juul.jensen@risoe.dk, www.risoe.dk

Surya R. Kalidindi Department of Materials Science and Engineering, Drexel University, LeBow 346, 3141 Chestnut Street, Philadelphia, PA 19104, USA, skalidin@coe.drexel.edu

Bae-Kyun Kim Department of Mining and Materials Engineering, McGill University, Montreal, QC Canada; Corporate R&D Institute, Samsung Electro-Mechanics, Suwon, Kyungki-Do, Korea 443-743, baekyun.kim@yahoo.ca, baekyun.kim@samsung.com

Hiroyuki Kokawa Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza-Aoba, Aoba-ku Sendai 980-8579, Japan, kokawa@material.tohoku.ac.jp

Mukul Kumar Lawrence Livermore National Laboratory, L-356, 7000 East Avenue, Livermore, CA 94550, USA, kumar3@llnl.gov

Ricardo Lebensohn Los Alamos National Laboratory, MST-8, MS G755, Los Alamos, NM 87545, USA, lebenso@lanl.gov

Veronica Livescu Los Alamos National Laboratory, MST-8, MS G755, Los Alamos, NM 87545, USA, vlivescu@lanl.gov

Elisabetta Mariani Department of Earth and Ocean Sciences, University of Liverpool, Liverpool L69 3GP, United Kingdom, mariani@liverpool.ac.uk

Jeremy K. Mason Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA, jkmason@mit.edu

Terry R. McNelley Department of Mechanical and Astronautical Engineering, Naval Postgraduate School, 700 Dyer Road, Monterey, CA 93943-5146, USA, tmcnelley@nps.edu

Graham Meaden BLG Productions Ltd., 3 Sydenham Road, Briston BS6 5SH, United Kingdom, grahammeaden@blueyonder.co.uk

E.S. Menon Department of Mechanical and Astronautical Engineering, Naval Postgraduate School, 700 Dyer Road, Monterey, CA 93943-5146, USA, skmeno1@nps.edu

Colin C. Merriman School of Mechanical and Materials Engineering, Washington State University, PO Box 642920, Pullman, WA 99164-2920, USA, merrimac@wsu.edu