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PREFACE

Bioelectrical activity is associated with living excitable tissue. It has been known, owing to
efforts of numerous investigators, that bioelectrical activity is closely related to the mech
anisms and functions of excitable membranes in living organs such as the heart and the
brain. A better understanding of bioelectrical activity, therefore, will lead to a better under
standing of the functions of the heart and the brain as well as the mechanisms underlying
the bioelectric phenomena.

Bioelectrical activity can be better understood through two common approaches. The
first approach is to directly measure bioelectrical activity within the living tissue. A rep
resentative example is the direct measurement using microelectrodes or a microelectrode
array. In this direct measurement approach, important characteristics of bioelectrical activ
ity, such as transmembrane potentials and ionic currents, have been recorded to study the
bioelectricity of living tissue. Recently, direct measurement of bioelectrical activity has also
been made using optical techniques. These electrical and optical techniques have played
an important role in our investigations of the mechanisms of cellular dynamics in the heart
and the brain.

The second approach is to noninvasively study bioelectrical activity by means of mod
eling and imaging. Mathematical and computer models have offered a unique capability of
correlating vast experimental observations and exploring the mechanisms underlying ex
perimental data. Modeling also provides a virtual experimental setting, which enables well
controlled testing of hypothesis and theory. Based on the modeling of bioelectrical activity,
noninvasive imaging approaches have been developed to detect, localize, and image bio
electrical sources that generate clinical measurements such as electrocardiogram (ECG) and
electroencephalogram (EEG). Information obtained from imaging allows for elaboration
of the mechanisms and functions of organ systems such as the heart and the brain.

During the past few decades, significant progress has been made in modeling and
imaging of bioelectrical activity in the heart and the brain. Most literature, however, has
treated these research efforts in parallel. The similarity arises from the biophysical point of
view that membrane excitation in both cardiac cells and neurons can be treated as volume
current sources. The clinical observations of ECG and EEG are the results of volume con
duction of currents within a body volume conductor. The difference among bioelectrical
activity originating from different organ systems is primarily due to the different physio
logical mechanisms underlying the phenomena. From the methodological point of view,
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vi Preface

therefore, modeling and imaging of bioelectrical activity can be treated within one theo
retical framework. Although this book focuses on bioelectric activity of the heart and the
brain, the theory, methodology, and state-of-the-art research that are presented in this book
should also be applicable to a variety of applications.

The purpose of this book is to provide a state-of-the-art coverage of basic principles,
theories , and methods of modeling and imaging of bioelectrical activity with applications to
cardiac and neural electrical activity. It is aimed at serving as a reference book for researchers
working in the field of modeling and imaging of bioelectrical activity, as an introduction
to investigators who are interested in entering the field or acquiring knowledge about the
current state of the field, and as a textbook for graduate students and seniors in a biomedical
engineering, bioengineering, or medical physics curriculum.

The first three chapters deal with the modeling of cellular activity, cell networks,
and whole organ for bioelectrical activity in the heart. Chapter I provides a systematic
review of one-cell models and cell network models as applied to cardiac electrophysiology.
It illustrates how modeling can help elucidate the mechanisms of cardiac cells and cell
networks, and increase our understanding of cardiac pathology in three-dimension and
whole heart models . Chapter 2 provides a thorough theoretical treatment of the forward
problem of bioelectricity, and in particular electrocardiography. Following a review of the
theoretical basis of equivalent dipole source models and state-of-the-art numerical methods
of computing the electrical potential fields, Chapter 2 discusses the applications of forward
theory to whole heart modeling and defibrillation. Chapter 3 reviews important issues in
whole heart modeling and its implementation as well as various applications of whole
heart modeling and simulations of cardiac pathologies. Chapter 3 also illustrates important
clinical applications the modeling approach can offer.

The following two chapters review the theory and methods of inverse imaging with
applications to the heart . Chapter 4 provides a systematic treatment of the methods and
applications of heart surface inverse solutions . Many investigations have been made in
order to inversely estimate and reconstruct potential distribution over the epicardium, or
activation sequence, over the heart surface from body surface electrocardiograms. Progress
has also been made to estimate endocardial surface potentials and activation sequence from
catheter recordings. These approaches and activities are well reviewed in Chapter 4. Chapter
5 reviews the recent development in three dimensional electrocardiography tomographic
imaging . Recent research shows that, by incorporating a priori information into the inverse
solutions, it is possible to estimate three-dimensional distributions of electrophysiological
characteristics such as activation time and transmembrane potentials, or equivalent current
dipole distribution. Inparticular, a whole-heart-model based tomographic imaging approach
is introduced, which illustrates the close relationship between modeling and imaging and
the merits of model-based imaging .

Chapter 6 deals with a noninvasive body surface mapping technology - surface Lapla
cian mapping. Compared with well-established body surface potential mapping , body sur
face Laplacian mapping has received relatively recent attention in its enhanced capability of
identifying and mapping spatially separated multiple activities . This chapter also illustrates
that a noninvasive mapping technique can be applied to imaging of bioelectrical activity
originated from different organ systems, such as the heart and the brain.

The subsequent two chapters treat inverse imaging of the brain from neuromagnetic
and neuroelectric measurements, as well as functional magnetic resonance imaging (fMRI).
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Chapter 7 reviews the forward modeling of magnetoencephalogram (MEG), and neuromag
netic source imaging with a focus on spatial filtering approach. Chapter 8 provides a general
review of tMR!, linear inverse solutions for EEG and MEG, and multimodal imaging inte
grating EEG, MEG and tMR!. Along with Chapters 4 and 5, these four chapters are intended
to provide a solid foundation in inverse imaging methods as applied to imaging bioelectrical
activity.

Chapter 9 deals with tissue conductivity, an important parameter that is required in
bioelectric inverse solutions. The conductivity parameter is needed in establishing accurate
forward models of the body volume conductor and obtaining accurate inverse solutions
using model-based inverse imaging. As most inverse solutions are derived from noninvasive
measurements with the assumption of known tissue conductivity distribution, the accuracy
of tissue conductivity is crucial in ensuring accurate and robust imaging of bioelectrical
activity. Chapter 9 systematically addresses this issue for various living tissues.

This book is a collective effort by researchers who specialize in the field of modeling
and imaging of bioelectrical activity. I am very grateful to them for their contributions
during their very busy schedules and their patience during this process. I am indebted to
Aaron Johnson Brian Halm, Shoshana Sternlicht, and Kevin Sequeira of Kluwer Academic
Publisher for their great support during this project. Financial support from the National
Science Foundation, through grants of NSF CAREER Award BES-9875344, NSF BES
0218736 and NSF BES-020l939, is also greatly appreciated.

We hope this book will provide an intellectual resource for your research and/or edu
cational purpose in the fascinating field of modeling and imaging of bioelectrical activity.

Bin He
Minneapolis
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FROM CELLULAR
ELECTROPHYSIOLOGY TO
ELECTROCARDIOGRAPHY

by Nitish V. Thakor, Vivek Iyer, and Mahesh B. Shenai
t Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave.,

Baltimore MD 21205

INTRODUCTION

Since many cardiac pathologies manifest themselves at the cellular and molecular levels,
extrapolation to clinical variables, such as the electrocardiogram (ECG), would prove in
valuable to diagnosis and treatment. One ultimate goal of the cardiac modeler is to integrate
cellular level detail with quantitative properties of the ECG (a property of the whole heart).
This magnificent task is not unlike a forest ranger attempting to document each leaf in a
massive forest. Both the modeler and ranger need to place fundamental elements in the
context of a broader landscape. But now, with the recent genome explosion, the modeler
needs to examine the "leaves" at even much greater molecular detail. Fortunately, the rapid
explosion in computational power allows the modeler to span the details of each molecular
"leaf" to the "forest" of the whole heart. Thus, cardiac modeling is beginning to span the
spectrum from DNA to the ECG, from nucleotide to bedside.

Extending cellular detail to whole-heart electrocardiography requires spanning several
levels of analysis (Figure 1.1). The one-cell model describes an action potential record
ing from a single cardiac myocyte. By connecting an array of these individual myocytes
(via gap junctions), a linear network (cable), two-dimensional (20) network or three
dimensional (3D) network (slab) model of action potential propagation can be constructed.
The bulk electrophysiological signal recorded from these networks is called the local ex
tracellular electrogram. Subsequently, networks representing tissue diversity and realistic
heart geometries can be molded into a whole heart model, and finally, the whole heart
model can be placed in a torso model replicating lung, cartilage, bone and dermis. At each
level, one can reconstruct the salient electric signal (action potential, electrogram, ECG)
from the cardiac sources by solving the forward problem of electrophysiology (Chapter 2).

Simply put, cardiac modeling is equivalent to solving a system of non-linear differential
(or partial differential) equations, though vigorous reference must be made to numerous


