
2

Modelling Preliminaries

2.1 Why Modelling?

To solve fluid flow problems and fully determine the dynamics of the flow,
including mapping the velocity field and the relation between prevailing pres-
sure and flow fields, is possible only in the most simply constructed cases
and mostly in the physical sciences [134, 193]. Fluid flow problems in biology,
by contrast, are rarely simply constructed and can rarely be solved directly
[34, 120]. The problem of flow in a tube, for example, has the simple “Poiseuille
flow” solution when the tube is rigid, its cross-section is perfectly circular, the
tube is long enough for flow to fully develop, and the fluid is a smooth “con-
tinuum” that has the simple rheological properties of a “Newtonian” fluid in
which shear stress is related linearly to the velocity gradients [34, 120]. Barely
any of these ideal conditions is met in biological problems involving flow in
tubes, most notably the problem of blood flow in arteries, and particularly
flow in coronary arteries, which is the subject of this book. Here the fluid
is not a smooth continuum but a suspension in plasma of discrete red and
other blood cells and, as we saw in the previous chapter, the system does not
consist of a single tube but of many millions of tube segments that are joined
together in a hierarchical tree structure. The segments are rarely long enough
or perfectly circular to support fully developed Poiseuille flow, and the de-
tails of flow at their junctions are highly complicated and depend strongly on
the exact geometry of each junction [122]. Furthermore, the precise branch-
ing structure of the vascular system of the heart cannot be mapped to the
last detail to allow a mathematical solution of the flow problem. In fact, it is
known that these details vary widely from one heart to another as much as
do fingerprints from one individual to the next [228].

The purpose of the vascular system of the heart is to bring blood flow
to within reach of every cell of the myocardium. Schematically, the vascular
system has the hierarchical form of a tree structure (Fig. 1.6.1), with flow pro-
ceeding from the root segment of the tree to the periphery. Pressure at the
base of the aorta, where the vascular trees of the left and right coronary arter-
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ies have their roots (Fig. 1.3.2), provides the driving force for this flow, but the
relationship between this pressure and the ultimate flow at the delivering end
of the two trees is everything but simple [98, 97]. Indeed, it is far from clear
that pressure at the base of the aorta is the only driving force for coronary
blood flow, nor is it clear that the resistance to flow, which this driving force
must overcome, is limited to that of simple flow in a tube. Other mechanisms
may be at play, and while some are known, their exact role in the dynam-
ics of coronary blood flow is as yet not fully understood. Prominent among
these are the rhythmic contractions of the myocardium with each pumping
cycle and the consequent effect of these contractions on vessels that are totally
imbedded within that tissue. It has been demonstrated that one effect of this
so-called “tissue pressure effect” is to reduce or even reverse the flow in the
main coronary arteries during the contracting (systolic) phase of the pump-
ing cycle [101], but it is possible that this same effect may actually provide a
pumping (driving) force for blood flow within the peripheral vessels near the
delivering end of the tree. The cyclic compression of coronary vasculature by
surrounding tissue also has a “capacitance” effect, namely a cyclic change in
the volume of blood contained in the system. This effect plays an important
yet unclear role in the dynamics of the coronary circulation, rendering the re-
lation between driving pressure and delivering flow far less tractable [96, 97].
The same is true of the effects of wave reflections from a massive number of
vascular junctions within the coronary network and the important yet unclear
role which these play in the dynamics of the coronary circulation [219].

Direct measurements of pressure and flow within elements of the coronary
network, to establish an empirical relation between them, are fraught with
no less difficulty. While some measurements have been made successfully in
isolated hearts [98, 97], access is possible only to larger coronary vessels at
entry into the coronary network, becoming increasingly difficult with increas-
ing “depth” into the network. Measurements in vivo are further hampered by
the violent motion of the coronary vessels as the heart contracts and relaxes
in its periodic pumping action. Thus, at best some access is possible to one
end of the coronary circulation, but this can provide only a limited base for
any conclusions because of lack of access to the distal end of the circulation.
More precisely, flow measured at entry to the coronary tree does not usually
represent flow at exit, because of capacitance and other effects mentioned
earlier.

Modelling is thus a necessity rather than a luxury in the study of coro-
nary blood flow. In the absence of adequate access to the system for direct
observations or measurements of pressure and flow, the only prospect for a
good understanding of the system is by using a model. The accuracy of the
model can be improved by testing it against whatever data or observations
are available, changing its design so as to produce closer agreement. The ob-
vious and most important advantage of using a model is that its behaviour
can be studied easily and more extensively than the actual system which it
represents. Indeed a range of such models have been proposed in the past and
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we examine some of them subsequently, but the emphasis in this book is less
on the models themselves than on the elements from which the models are
constructed. The reason for this is that a model of the coronary circulation
is only useful if it can be tested against some direct measurements. In fact,
the model must be tailored to the type of measurements available, and as the
nature and availablility of such measurements changes, so must the design
and nature of the model to be used.

Our understanding of the dynamics of the coronary circulation is presently
at its infancy. Indeed, in the clinical setting a purely static view of the system
predominates, in which the concern is primarily with whether vessels are fully
open or restricted by disease [127, 133, 73]. The reason for this viewpoint is
not that the dynamics of the coronary circulation are thought unimportant
in the clinical setting but that as yet we do not have a clear understanding or
a clear model of these dynamics. The purpose of this book is to provide the
student, researcher, or indeed clinician, with basic analytical and conceptual
tools with which to explore and hopefully improve his or her understanding
of the dynamics of the coronary circulation.

2.2 The “Lumped Model” Concept

The relation between pressure and flow in a tube depends on such properties of
the tube as its diameter, length, and elasticity. It also depends on the form of
the driving pressure, in particular whether the pressure is steady or pulsatile.
The relation between pressure and flow in a vascular tree structure consisting
of a large number of tube segments depends not only on all such factors in
each tube segment but also on events at the junctions between tube segments
and on how the properties of individual segments are distributed within the
tree structure. The overwhelming complexity of this problem gives rise to the
“lumped model” concept. Detailed analysis and results based on this concept
are presented in subsequent chapters. Here we discuss only broadly the concept
itself as a valid modelling strategy.

Essentially, in a lumped model the complex vascular structure of the coro-
nary network is ignored and the network is replaced by a single tube having
properties representative of the network as a whole. It is a variant of the more
familiar “black box” concept, in which a complex system is enclosed by an
imaginary box and only the relation between input and output from the box is
examined to learn something about the characteristics of the system without
delving into the complexity that produced these characteristics. In the coro-
nary circulation the lumped model attempts to reproduce a relation between
pressure and flow similar to that observed or measured in the physiological
system but without going through the overwhelming task of determining how
the relation unfolds through the complex structure of the coronary vascular
network.
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Of particular interest is the relation between pressure and flow at input
to the system and pressure and flow at output. The reason for this is that
while some direct measurements of pressure and flow are possible at input to
the system, usually at the left or right main coronary arteries, no such mea-
surements are possible at output, that is at the capillary end of the system.
The output end of the coronary circulation is of course of particular clinical
interest because it represents the ultimate function of the system, namely the
delivery of blood to cardiac tissue. But at this end of the system flow is divided
into many millions of capillaries in which neither the velocity nor the num-
ber of capillaries can be determined with sufficient accuracy to compute total
output. A correct model of the system would thus provide a theoretical means
of obtaining important information at output which is not available experi-
mentally. However, the “correctness” of the model can ultimately be verified
only by testing its results against some measurements from the physiologi-
cal system. Thus, the modelling process becomes a highly intricate iterative
process whereby the choice and values of model parameters are guided by a
comparison of the results of the model with whatever direct measurements
are available [110, 24, 115, 90, 98, 97].

Pressure and flow in the coronary circulation are highly pulsatile because
of the pulsatile nature of the input driving pressure and because, in addition
to this, much of the coronary vasculature is imbedded in cardiac muscle tissue
and is subject to the effects of cyclic contraction of the cardiac muscle, so-
called “tissue-pressure effects”. Thus, pressure and flow at both ends of the
system are time-dependent in the sense that they have cyclic waveforms. The
waveforms are not the same at both ends, however. At any point in time
within the oscillatory cycle, total inflow into the coronary system is not usually
equal to total outflow because of the so-called “capacitance” effect. There is
continuous change in the total volume of vascular lumen within the system
during the oscillatory cycle. Therefore, some inflow may go towards “inflating”
the system and will not contribute to outflow and, conversely, some outflow
may be produced by “deflation” of the system rather than by direct inflow.
While average flow must be the same at both ends of the system, that is, flow
averaged over one or more cycles, a relation between average flow and average
pressure does not feature the time-dependent characteristics of the system
that actually contribute to that relation. Only events within the oscillatory
cycle exhibit these characteristics, but the nature of these events is lost in the
time-averaging process. For these reasons the main focus of lumped models
has been on a time-dependent relation between pressure and flow, that is on
the time course of that relation within the oscillatory cycle.

2.3 Flow in a Tube

At the core of almost every modelling scheme for coronary blood flow and for
blood flow in general is the mechanics of flow in a tube. Indeed, the lumped
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model discussed in the previous section is based on the concept that flow
through the complex vasculature of the coronary circulation can be replaced
by flow in a single tube with “equivalent” properties. It is important, therefore,
to outline the basic properties of flow in a single tube, which we do in this
section. The validity of the basic premise of the lumped model concept, namely
that flow in a complex system of vessels can be considered equivalent to flow in
a single tube, can only be discussed in the context of each particular modelling
scheme and is therefore deferred to subsequent chapters.

When fluid enters a tube, it does not simply slide along the tube as a
bullet, because of a condition of “no-slip” that prevails at the tube wall [13,
34, 174, 71] whereby elements of fluid in contact with the tube wall become
arrested there, forming a cylindrical layer of stationary fluid attached to the
inner surface of the tube wall. As fluid progresses along the tube, the next layer
of fluid adjacent to the first is slowed down by the stationary layer because of
the viscosity of the fluid, and similarly, subsequent concentric layers of fluid
that are further and further away from the wall are slowed down but to a
lesser and lesser extent and are thus able to move more freely, fluid along the
axis of the tube able to move the fastest (Fig. 2.3.1).

Fig. 2.3.1. Fully developed flow in a tube, commonly referred to as Poiseuille flow,
is characterized by a parabolically shaped velocity profile, with zero velocity at the
tube wall and maximum velocity along the tube axis.

Ultimately, at some distance downstream from the tube entrance, the flow
becomes “fully developed” and is generally referred to as “Hagen-Poiseuille
flow” after those who studied it first [168, 192, 174, 135], or more commonly as
simply “Poiseuille flow”. Flow in this region is characterized by a parabolically
shaped “velocity profile” along a diameter of the tube, with zero velocity at
the tube wall and maximum velocity at the tube axis, and is given by [221]

u =
k

4μ
(r2 − a2) (2.3.1)

where μ is viscosity of the fluid, r is radial coordinate measured from the axis
of the tube, a is the tube radius, and k is the pressure gradient driving the
flow, which in Poiseuille flow is constant and equal to the pressure difference
Δp between any two points along the tube divided by the length of tube l
between them, that is [221]
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k =
dp

dx
=

Δp

l
(2.3.2)

Here p is pressure and x is axial coordinate, positive in the direction of flow.
The pressure difference Δp is measured in the direction of flow, that is

Δp = p2 − p1 (2.3.3)

where p1, p2 are pressures at the upstream and downstream ends of the tube
segment, respectively. Since p1 must be higher than p2 to produce flow in the
positive x−direction, Δp is usually referred to as the “pressure drop” along
the tube segment.

Eq. 2.3.1 indicates that in Poiseuille flow the flow rate q through the tube
is given by

q =
∫ a

0
2πrudr =

−kπa4

8μ
(2.3.4)

Thus, average flow velocity u is given by

u =
q

πa2 =
−ka2

8μ
(2.3.5)

while maximum velocity û occurs on the tube axis where r = 0 and from
Eq. 2.3.1 is given by

û =
−ka2

4μ
(2.3.6)

The two results show that maximum velocity in Poiseuille flow is twice the
average velocity, that is

û = 2u (2.3.7)

As described earlier, Poiseuille flow is not established immediately on entry
into the tube, but evolves over a length of tube le known as the “entry length”.
Flow in that region of the tube is usually referred to as “developing flow” and
an estimate of the entry length is given by [123, 174, 71]

le = 0.04NRd (2.3.8)

where d is tube diameter and NR is the Reynolds number, defined by

NR =
ρud

μ
(2.3.9)

where ρ is fluid density.
When the lumped model is used to study flow in the coronary circulation,

which means that coronary blood flow is being modelled by an equivalent flow
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in a single tube, the equivalent flow is invariably considered fully developed.
This assumption is fairly difficult to deal with because it is at once both
necessary and unjustified. The assumption is unjustified because the entry
lengths in many millions of tube segments in the coronary circulation will
be different and cannot be represented by an “equivalent” entry length in a
single tube. Furthermore, the assumption is necessary because the problem of
determining the entry length and examining the extent to which flow is fully
developed in each of these millions of tube segments is intractable. It is in
fact further complicated because flow is entering and leaving tube segments
at different stages of development. As a result, the standard entry length
analysis leading to the result in Eq. 2.3.8, based on the assumption that flow
entering the tube is uniform, no longer applies [31]. The best that can be done
is to evaluate the weight of the assumption of fully developed flow in each
modelling scheme in context of the particular aspect of coronary circulation
being studied.

If flow entering a tube is assumed to have a uniform velocity u, then a
key difference between the developing and fully developed regions of the flow
is that in the developing region elements of fluid near the tube axis (where
u = û) are being accelerated to meet the higher velocity there, while elements
of fluid near the tube wall (where u = 0) are being decelerated because of the
condition of no-slip at the tube wall. In the fully developed region, by contrast,
fluid elements have reached their ultimate speed and are moving with constant
velocity. This difference is compounded when the flow in a tube is pulsatile.
In that case fluid elements in all regions of the tube are being accelerated
and decelerated by the oscillatory driving pressure. Thus, in the entry region
of the tube, fluid elements are being accelerated or decelerated in space by
the entry conditions described above, and accelerated and decelerated in time
by the oscillatory driving pressure. This makes the length of the entry region
time-dependent and more difficult to define [34, 71, 7, 37].

2.4 Fluid Viscosity: Resistance to Flow

Flow in a tube may be resisted in a number of ways. If it is being accelerated,
fluid inertia resists the pressure driving the flow. If the tube wall is elastic,
its elasticity may oppose the driving pressure as it expands the tube wall.
However, in both cases the same effect may also aid the flow, as it decelerates
in the first instance, and as the tube wall recoils in the second. Thus, when
flow in a tube is oscillatory these two forms of resistance do not dissipate
energy, except in the second case if the tube wall is not purely elastic but has
some viscoelastic properties.

The most important form of resistance to flow in a tube is that due to
viscous friction at the interface between fluid and the tube wall. It is important
because it is present when flow is steady or oscillatory and it always dissipates
energy whether the flow is accelerating or decelerating. Because of this, it is
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usually referred to simply as “the resistance”, and we shall follow this practice
in this book. Resistance to flow in a tube arises because of a combination of
the no-slip boundary condition at the tube wall and the viscous property of
the fluid.

A key property of viscous fluids is that the force required to move adjacent
layers of fluid at different velocities, that is, the force required to create shear
flow, is an increasing function of the local velocity gradient. For a large class
of fluids known as “Newtonian fluids”, the force is simply proportional to the
velocity gradient, that is

τ = μ

(
du

dr

)
(2.4.1)

where τ is the local shear stress, that is, the local stress required to maintain
the shearing motion, and μ is the coefficient of viscosity of the fluid. The
velocity gradient du/dr is a measure of the local change in the velocity u of
adjacent layers of fluid relative to the distance r between them. In Poiseuille
flow this corresponds to the local slope of the parabolic velocity profile shown
in Fig. 2.3.1 and given in Eq. 2.3.1.

The linear relation between shear stress and velocity gradient in Eq. 2.4.1
was first derived by Newton, hence the term “Newtonian fluids” has been used
for fluids that obey the relation [168, 192]. There is a long-standing question
whether blood, because of its corpuscular nature, is or is not a Newtonian
fluid [21]. The question is not a very meaningful one because there are blood
flow problems in which blood can be treated as a Newtonian fluid and others
where it cannot. The question must therefore be directed at the nature of
the flow problem being studied rather than at the nature of blood. Many
problems relating to the general dynamics of flow in the systemic circulation,
with focus on its pulsatile, have been studied successfully on the assumption of
a Newtonian behaviour of the fluid, that is, on the assumption that Eq. 2.4.1
is valid [135, 141, 153]. That is not to say that blood is a Newtonian fluid,
but that any non-Newtonian behaviour of blood does not significantly affect
the general dynamics of the systemic circulation as a whole, although it may
be important in the study of local flow properties in a single vessel or a single
junction. The same is appropriate for a study of the general dynamics of the
coronary circulation and we therefore uphold the Newtonian assumption in
this book.

An important consequence of the viscous property of fluids is that the
velocity difference between adjacent layers of the fluid must be infinitely small
so that the velocity gradient remains finite. In other words, change of velocity
within the fluid must be smooth. A step change of velocity (Fig. 2.4.1) is not
possible because it would produce a locally infinite velocity gradient, and the
shear stress required to maintain it would be infinite (Eq. 2.4.1).

It follows from this property that at the interface between a moving fluid
and a solid boundary, as at the inner surface of a tube, there can be no
finite difference between the fluid velocity tangential to the boundary and the
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Fig. 2.4.1. An important consequence of the viscous property of fluids is that the
velocity difference between adjacent layers of fluid must be infinitely small so that
the velocity gradient remains finite. Thus, a step change of velocity (top) is not
possible because it would produce a locally infinite velocity gradient and the shear
stress required to maintain it would be infinite. Instead, the change of velocity must
occur smoothly (bottom) so that the velocity gradient remains finite.

boundary itself. That is, the tangential velocity of fluid elements in contact
with the boundary must be zero relative to the boundary, as required by
the no-slip boundary condition (Fig. 2.4.2). This does not “prove” the no-
slip boundary condition but shows only that the viscous property of fluids
is consistent with it. Indeed, the basis of the no-slip boundary condition has
been and remains largely empirical [13, 34, 174, 71].

Eq. 2.4.1 applied to Poiseuille flow in a tube, with velocity u as given by
Eq. 2.3.1, yields the following result for the shear stress τw at the tube wall

τw = μ

(
du

dr

)
r=a

=
ka

2
=

aΔp

2l
(2.4.2)

Since the pressure gradient k or pressure difference Δp are negative in the flow
direction, it follows that τw is also negative. That is, the shear stress (acting
on the fluid) at the tube wall has the effect of opposing the flow. The velocity
gradient at the tube wall which is responsible for this shear stress is of course
a consequence of the condition of “no-slip” there. It causes fluid in contact
with the tube wall to come to rest while fluid along the tube axis charges
at maximum velocity. A velocity gradient must therefore exist between the
two regions and at the tube wall. Therefore, the condition of no-slip and the
viscous property of the fluid together produce the shear stress at the tube wall.
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Fig. 2.4.2. The viscous property of fluids requires that at the interface between
a moving fluid and a solid boundary, as at the inner surface of a tube, there be
no finite difference between the fluid velocity tangential to the boundary and the
boundary itself (top). That is, the tangential velocity of fluid elements in contact
with the boundary must be zero relative to the boundary itself (bottom), as required
by the no-slip boundary condition.

The total resistance to flow R, which results from shear stress acting on
the entire surface area of the tube, can be expressed in terms of the flow rate
q as

R =
Δp

q
(2.4.3)

and substituting for the flow rate from Eq. 2.3.4, and using Eq. 2.3.2, this gives

R = − 8μl

πa4 (2.4.4)

The minus sign indicates that the resistance, which represents the force ex-
erted by the tube wall on the fluid, is opposite to flow direction. The sign is
usually omitted because the term “resistance” in fact refers to a force oppos-
ing the flow, that is a force in the negative direction when flow represents the
positive direction. This is equivalent to modifying the definition of R to

R = −Δp

q
=

8μl

πa4 (2.4.5)

It is seen that resistance to flow, which represents the amount of pressure
difference required to produce a given amount of flow, depends critically on
tube radius, being proportional to the inverse of the radius to the fourth power.
Thus, if the tube radius is reduced by a factor of 2, the resistance increases
by a factor of 16, that is by 1, 600%. If the tube radius is increased by a factor
of 2, the resistance decreases by a factor of 16, that is by approximately 94%.
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Writing Eq. 2.4.5 as an equation for the flow rate q, we find the amount of
flow that would be produced by a given pressure difference Δp, namely

q = −πa4Δp

8μl
(2.4.6)

If in an experiment the amount of flow is found higher than that dictated by
Eq. 2.4.6, this could be interpreted as a change in one of the other parame-
ters on the right side of the equation. Indeed, experiments in the past have
shown that there is an apparent drop in blood viscosity in very small blood
vessels, usually referred to as the Fahraeus-Lindqvist effect [63, 45, 221]. The
effect is termed “apparent” because it is not based on direct measurement
of the viscosity μ but on a measurement of flow for a given pressure drop.
Thus, an observed value of q higher than that prescribed by Eq. 2.4.6 was in-
terpreted as a decrease in the viscosity μ because such a decrease would also
produce a higher value of q. Another interpretation which has been considered
is the possibility of partial slip at the tube wall which would have the effect
of requiring a smaller pressure drop for a given amount of flow, or conversely
higher flow rate than is prescribed by Eq. 2.4.6, because of lower friction at
the tube wall. However, it has been difficult to demonstrate that slip actually
occurs in small blood vessels, and this interpretation is still a matter of de-
bate [156, 211, 221]. Similar comments apply to the Fahraeus-Lindqvist effect
because of the difficulties involved in actually measuring blood viscosity in
small vessels. As a result of these difficulties it has not been possible, so far,
to incorporate the concepts of slip or of the Fahraeus-Lindqvist effect into
mainstream modelling schemes of the general dynamics of either the systemic
or the coronary circulation.

2.5 Fluid Inertia: Inductance

Acceleration in fluid flow may occur in one of two ways: in space or in time.
Acceleration in space occurs when the space available to a stream of fluid is
decreasing, so the fluid must increase its velocity to go through a reduced
amount of space. Flow in a tube with a narrowing, as in a bottle neck, is
an example (Fig. 2.5.1). Velocity at the narrowing must be higher than it
is elsewhere, since the flow rate through the tube must be everywhere the
same by conservation of mass, and since it is assumed here that the flow is
incompressible, that is fluid density is not changing. Thus, the fluid is in a
state of acceleration as it goes through the narrowing. The acceleration is in
space, that is, in the sense that fluid elements are being accelerated as they
progress along the tube.

Another, less obvious, example of acceleration in space occurs at the en-
trance to a tube. If fluid enters with uniform velocity (Fig. 2.5.2), elements of
the fluid along the tube axis must accelerate to meet the maximum velocity
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Fig. 2.5.1. Flow in a tube with a narrowing causes fluid elements to accelerate as
they approach the narrowing and decelerate as they leave, assuming that the fluid
is incompressible. Flow velocity is highest at the neck of the narrowing as indicated
by the closeness of the streamlines there. Both the acceleration and deceleration
are occurring in space, in the sense that the change in velocity is occurring as fluid
elements progress along the tube.

in Poiseuille flow, while fluid elements near the tube wall are slowed down by
the viscous resistance to meet the condition of no-slip at the tube wall. Thus
in the entrance region of the tube some fluid is in a state of acceleration and
some is in a state of deceleration, in both cases the change is occurring in
space, that is as the fluid progresses along the tube.

Fig. 2.5.2. Flow in the entrance region of a tube provides another example of
acceleration and deceleration in space. If fluid enters with uniform veleocity, elements
of the fluid along the tube axis must accelerate to meet the maximum velocity in
Poiseuille flow, while fluid elements near the tube wall are slowed down by the
viscous resistance and condition of no-slip at the tube wall.

One of the most important features of acceleration or deceleration in space
is that it occurs in steady flow, that is, in a state of flow which does not change
in time. In steady flow the velocity field does not change with time, meaning
that the velocities at fixed positions within the flow field are constant and
acceleration and deceleration occur as fluid elements move from one position
to the next. It is in this sense that acceleration and deceleration in steady
flow are seen as occurring in space.

Acceleration or deceleration in time, by contrast, is associated with un-
steady flow, a state of flow in which the velocity distribution within the flow
field changes with time. This situation occurs when the pressure driving the
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flow is not constant in time, as is the case in pulsatile blood flow where the
driving pressure changes in an oscillatory manner (Fig. 2.5.3). In this case ac-
celeration and deceleration are occurring in time, in the sense that the velocity
at fixed points within the flow field is changing in time.

Fig. 2.5.3. Changing flow field in oscillatory flow. Different panels represent differ-
ent points in time within the oscillatory cycle. Velocity is changing in time at fixed
positions in space within the flow field. Acceleration and deceleration are occurring
in time.

When a mass of fluid is accelerated or decelerated in time, the fluid does
not respond immediately, because of its inertia. Thus, if the pressure difference
Δp driving the flow in a tube changes suddenly to a higher level, it takes the
flow rate q some time before it adjusts to a new value appropriate for the
new driving pressure difference. This “reluctance” of the fluid to respond
immediately is a form of resistance which would appropriately be referred to
as “inertance” but is commonly known as inductance because of an electrical
analogy to be discussed later.

Unlike the viscous resistance to flow which is present at constant flow
rate, inductance is only present when flow is being accelerated or decelerated,
that is, only when there is change in the flow rate. In fact, it is the rate of
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change of flow rate that is being resisted by the fluid, which means that a
force is required to bring about such change. In the case of flow in a tube
this means that a pressure difference ΔpL would be required specifically for
this purpose; the subscript L is there to distinguish this pressure difference
from that required to maintain the flow against the viscous resistance. More
precisely, the required force is proportional to the rate of change of flow rate,
that is

ΔpL = L
dq

dt
(2.5.1)

Again, the symbol L is commonly used for the constant of proportionality
because of analogy with inductance in electric systems.

The basis of this relation can be found in the mechanics of an isolated
mass m, governed by Newton’s law of motion, which asserts that the product
of mass and acceleration must equal the net force acting on that mass. If the
force is denoted by F and the position of the mass is denoted by x, the law
can be written as

m
d2x

dt2
= F (2.5.2)

where t is time. In general this equation is a vector equation because both
F and x are vectors, but for the present purpose it is sufficient to work in
only one dimension. In fluid flow the corresponding situation would be that
of flow in a tube being accelerated, or decelerated, in one direction, namely
along the axis of the tube. If the viscous effect at the tube wall is neglected
for now (as it is accounted for separately below), then the body of fluid may
be considered to move freely along the tube, as a bolus, in accordance with
Newton’s law. If the diameter of the tube is d, then the mass of such bolus
of length l, being a cylindrical volume of fluid of diameter d and length l, is
ρlπd2/4, where ρ is the density of the fluid. If the velocity of the bolus is u
and the pressure difference driving it is ΔpL then the law of motion applied
to this mass gives

ρlπd2

4
du

dt
= ΔpL

πd2

4
(2.5.3)

If q is the volumetric flow rate, then q = uπd2/4 and the above can be put in
the form

ΔpL =
(

4ρl

πd2

)
dq

dt
(2.5.4)

Comparison of this with Eq. 2.5.1 indicates that the constant L in that equa-
tion corresponds to the bracketed term above, that is

L =
(

4ρl

πd2

)
(2.5.5)
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Thus, Eq. 2.5.1 and the concept of inductance on which it is based have a
basis in simple mechanics.

The total pressure difference Δp required to drive the flow in a tube in the
presence of a change in flow rate is the sum of the pressure difference needed
to overcome the force of resistance due to inductance, namely ΔpL, and the
pressure difference needed to overcome the force of resistance due to viscosity
discussed in the previous section, Eq. 2.4.3, now to be denoted by ΔpR, that
is

Δp = ΔpR + ΔpL (2.5.6)

Substituting for ΔpR from Eq. 2.4.3 and for ΔpL from Eq. 2.5.1, we then have

Δp = Rq + L
dq

dt
(2.5.7)

This is a first order ordinary differential equation which has the general solu-
tion [116]

q(t) =
e−t/(L/R)

L

∫
Δp et/(L/R)dt (2.5.8)

If the driving pressure difference is constant, say

Δp = Δp0 (2.5.9)

Eq. 2.5.8 gives upon integration

q(t) =
Δp0

R
+ Ae−t/(L/R) (2.5.10)

where A is a constant of integration. If the flow rate is zero at t = 0, we find
A = −Δp0/R and the solution finally becomes

q(t) =
Δp0

R

(
1 − e−t/(L/R)

)
(2.5.11)

As time goes on, the exponential term vanishes, leaving the flow rate at a
constant value of Δp0/R, which is what it would be against a resistance R
and with a driving pressure difference Δp0 (Eq. 2.4.3). At that value the flow
is said to be in steady state, while prior to that it is in a transient state.

The effect of inertia of the fluid is thus to cause the flow to take a certain
amount of time to reach steady state. As the driving pressure difference is
applied, the flow increases from zero to its ultimate value, but because of
inertia it takes a certain amount of time to reach that value. The higher the
inertial effect the longer it takes the flow to reach steady state (Fig. 2.5.4).
The ratio L/R has the dimensions of time and is a measure of the time delay
caused by the inertial effect. It is usually referred to as the “inertial time
constant” and we shall denote it here by tL, that is we define
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tL =
L

R
(2.5.12)

The higher the value of tL the higher the prevailing inertial effect and the
longer is the time required for flow to reach steady state. It is important
to note, however, that the approach to steady flow is asymptotic, as seen in
Fig. 2.5.4, which means that, strictly, the flow takes an infinite amount of time
to reach steady state. For practical purposes, however, the flow is sufficiently
close to steady state in a finite and usually very short time. The inertial time
constant tL is a measure of that time. More precisely, if in Eq. 2.5.11 we write

q(t) =
q(t)

Δp0/R
(2.5.13)

then

q(t) = 1 − e−t/tL (2.5.14)

and upon differentiation we find

q ′(t) =
1
tL

e−t/tL (2.5.15)

q ′(0) =
1
tL

(2.5.16)

Thus, the reciprocal of tL represents the initial slope with which the flow curve
moves towards its asymptotic value. The higher the inertial effect the higher
the value of tL and hence the lower the initial slope of the the flow curve
and the longer it takes flow to reach its asymptotic value. Also, because the
asymptotic value of the flow is here set at 1.0, then tL also represents the time
it takes the flow to reach this asymptotic value if, hypothetically, it continued
with its initial slope, as illustrated in Fig. 2.5.4

It is important not to confuse transient and steady states here with devel-
oping and fully developed flow discussed in Section 2.3. Here, and essentially
throughout the lumped model concept, the flow is assumed to be fully de-
veloped. Indeed, the relation ΔpR = Rq used in Eq. 2.5.7 is based on the
results obtained earlier for fully developed flow (Eq. 2.4.3). Steady and tran-
sient states here, by contrast, relate to flow development in time. Here we
start out in a tube where fully developed flow is already established, then the
pressure difference driving the flow is changed and we examine how, in time,
the flow rate q adjusts to this change. Steady state is reached when the flow
rate has fully adjusted to the change, while the adjustment period is referred
to as the transient state. Thus, broadly speaking, developing and fully devel-
oped flow relate to flow development in space, as in the entrance region of a
tube, while transient and steady states relate to flow development in time, as
when the pressure difference driving the flow is changed.
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Fig. 2.5.4. If the pressure difference driving the flow in a tube is suddenly increased
from 0 to some fixed value Δp0, the flow increases gradually (solid curves) until it
reaches the value Δp0/R, which is shown by the dashed line above, normalized to
1.0. At that value the flow is said to be in steady state, while prior to that it is in a
transient state. In steady state the flow rate has the value which it would have against
a resistance R and with a driving pressure difference Δp0 (Eq. 2.4.3), but because
of fluid inertia the flow rate takes time to reach this value, the higher the inertia the
longer the time. A good measure of the inertia of the fluid is the ratio L/R, which
has the dimension of time when L is the inertial constant defined in Eq. 2.5.5 and R
is the resistance defined in Eq. 2.4.4. The ratio is usually referred to as the “inertial
time constant” and is denoted here by tL (see Eq. 2.5.12). The three solid curves
above, from left to right respectively, correspond to L/R = tL = 1.0, 3.0, 6.0 seconds.
It is seen clearly how the time it takes the flow curve to reach its ultimate value is
directly related to the value of tL. More specifically, the reciprocal of tL represents
the initial slope with which the flow curve moves towards its asymptotic value as
indicated by the sloping dashed lines. The higher the inertial effect the higher the
value of tL and hence the lower the initial slope of the flow curve and the longer
it takes the flow to reach its asymptotic value. Also, because the asymptotic value
of the flow is here set at 1.0, then tL also represents the time it takes the flow to
reach this asymptotic value if, hypothetically, it continued with its initial slope. In
the absence of the inertial effect (L/R = tL = 0), the flow curve would “jump” to
the asymptotic value at time t = 0 and remain on it thereafter.
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If the driving pressure gradient Δp increases linearly with time, say

Δp =
Δp0

T
t (2.5.17)

where Δp0 is a constant and T is a fixed time interval, Eq. 2.5.8 gives upon
integration (by parts) and simplification

q(t) =
Δp0

TR

(
t − L

R

)
+ Ae−t/(L/R) (2.5.18)

where A is a constant of integration. If the flow rate is zero at t = 0, we find
A = Δp0L/(TR2) and the solution becomes

q(t) =
Δp0

TR

(
t − L

R
+

L

R
e−t/(L/R)

)
(2.5.19)

or in nondimensional form

q(t) =
q(t)

Δp0/R
=

t

T
− tL

T

(
1 − e−(t/T )/(tL/T )

)
(2.5.20)

It is clear from the form of the solution that the appropriate time variable in
this case is the fractional time t/T , where T may, for example, be taken as
the total interval over which the flow takes place, hence t/T has the range 0
to 1.0. As in the previous case, the effect of inertia is embodied in the value
of tL. Again, since tL has the dimension of time, it is appropriate in this case
to consider values of the inertial time constant tL/T , as this indeed is the
parameter required in the above equation.

Results for tL/T = 0.1, 0.3, 0.5 are shown in Fig. 2.5.5. As the driving
pressure difference Δp increases, the flow rate q ′(t) begins to increase, but
as in the previous case and because of inertia, it takes a certain amount of
time for the flow to reach a value appropriate for the prevailing value of the
pressure difference. But since in this case the pressure difference is continually
increasing, the flow rate is never able to reach that appropriate value. What
the flow rate is able to achieve as time goes on is a state in which its value is
a fixed amount below what it should be. We may refer to this state as quasi-
steady state since, strictly, steady state is usually defined as one in which the
flow rate is either constant or periodic. In the present case it is continually
increasing. Nevertheless, it is possible here to distinguish (Fig. 2.5.5) between
an initial period where the flow rate is adjusting to the new pressure difference,
which may be referred to as a transient state, and a final period in which the
flow rate is still changing but is now changing at a fixed rate, the same rate
at which the driving pressure difference is changing. It is in this sense that
the latter may be referred to as quasi-steady state.

From Eq. 2.5.20 we see that the quasi-steady state is reached asymptoti-
cally, as the exponential term becomes insignificant, and the flow rate reduces
to
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q(t) ∼ t

T
− tL

T
(2.5.21)

Thus, asymptotically, the flow acquires the same form as the driving
pressure, namely that of a linearly increasing function with a unit slope
(Eq. 2.5.20), but, because of the inertial effect the flow curve is shifted along
the time axis by an amount equal to the value of tL/T as shown in Fig. 2.5.5.
This shift represents the time interval by which the flow rate lags behind
the prevailing pressure difference. The higher the inertial effect, the higher
the value of tL and the larger this ultimate gap between pressure and flow.
Also, this gap between the flow and driving pressure never closes in this case
because the driving pressure is continuouly changing. Only in the case of con-
stant driving pressure does the flow ultimately “catch up” with the prevailing
pressure and in a sense “overcome” the inertial effect as it reaches steady
state. In the case of continuously changing pressure, as in the present case,
the inertial effect is present in the transient as well as in the quasi-steady
state.

If, finally, the driving pressure difference Δp varies as a periodic function
of time, say

Δp = Δp0 sin ωt (2.5.22)

where ω is the angular frequency of the oscillation, then Eq. 2.5.8 gives upon
integration (by parts again)

q(t) =
Δp0(R sin ωt − ωL cos ωt)

R2 + ω2L2 + Ae−(R/L)t (2.5.23)

where A is a constant of integration. If the flow rate is zero at time t = 0, we
find

A = Δp0ωL/(R2 + ω2L2) (2.5.24)

and the solution becomes

q(t) =
Δp0

R2 + ω2L2

(
R sin ωt − ωL cos ωt + ωLe−(R/L)t

)
(2.5.25)

A more useful form of the solution is obtained by combining the two trigono-
metric terms to give

q(t) =
Δp0√

R2 + ω2L2

(
sin (ωt − θ) − ωL√

R2 + ω2L2
e−(R/L)t

)
(2.5.26)

where

θ = tan−1
(

ωL

R

)
(2.5.27)

or in nondimensional form
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Fig. 2.5.5. If the pressure difference driving the flow in a tube increases linearly
from zero, the flow rate begins to increase, but because of inertia it requires a certain
amount of time to reach a value appropriate for the prevailing value of the pressure
difference. But since in this case the pressure difference is continually increasing, the
flow rate is never able to reach that appropriate value. What the flow rate is able to
achieve as time goes on is a quasi-steady state in which its value is a fixed amount
below what it should be. Thus, asymptotically, the flow acquires the same form as
the driving pressure, namely that of a linearly increasing function with a unit slope
(Eq. 2.5.20), but, because of the inertial effect the flow curve is shifted along the
time axis by an amount equal to the value of tL/T as shown. The three solid curves
above, from left to right respectively, correspond to tL/T = L/RT = 0.1, 0.3, 0.5,
where T is total time interval over which flow is taking place, here taken as 1.0.
The heavy dashed curve represents what the flow rate would be in the absence of
inertial effect, that is when the inertial parameter tL/T is zero. The light dashed
curves represent the asymptotes of the flow curves for other values of the inertial
parameter, shown at the bottom. It is seen that the higher the value of tL/T the
larger the ultimate gap between pressure and flow and hence the higher the inertial
effect.

q(t) =
q(t)

Δp0/R
=

1√
1 + ω2t2L

(
sin (ωt − θ) − ωtL√

1 + ω2t2L
e−t/tL

)
(2.5.28)

θ = tan−1 (ωtL) (2.5.29)

In this form we see that as the exponential term becomes insignificant, the flow
rate becomes the same function of time as the oscillatory pressure difference,
but with phase angle shift θ. The size of the shift is higher the higher the
inertia of the fluid, that is the higher the value of the inertial time constant
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Fig. 2.5.6. If the pressure difference driving flow in a tube changes in an oscillatory
manner, the flow rate attempts to follow the same oscillatory pattern, but because
of inertia it requires a certain amount of time to reach that pattern. When it does,
however, the flow rate lags behind the pressure difference by a fixed phase angle θ
and its amplitude is lower than it would be in the absence of inertial effects, which
here has the normalized value of 1.0. The three solid curves above, from left to right
respectively, correspond to tL = L/R = 0.1, 0.3, 1.0 seconds. It is seen that the
higher the value of the inertial time constant tL the larger the phase shift θ and the
lower the amplitude of the flow oscillations.

tL(= L/R). Thus, here we see essentially the same behaviour of the fluid as in
the previous case. The flow begins with a transient period in which it attempts
to satisfy the prevailing pressure difference, but it never does. Instead, a steady
state is reached in which the flow rate oscillates with the same frequency as
the pressure difference driving the flow. It is a true “steady state” in this case,
by common definition of that term [116]. In this state the flow rate oscillates
in tandem with but lags behind the pressure difference by a fixed angle θ. The
higher the inertial effect the larger is θ, and in the absence of inertial effects
θ = 0 as can be seen from Eq. 2.5.29. Also, from Eq. 2.5.28 we see that the
amplitude of flow oscillation, which represents the highest flow rate reached
at the peak of each cycle, is given by

|q(t)| =
1√

1 + ω2t2L
(2.5.30)

thus the higher the inertial effect, hence the higher the value of tL, the lower
the amplitude of flow oscillation, as seen in Fig. 2.5.6. In the absence of inertial
effects the amplitude of flow oscillation would be 1.0.
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2.6 Elasticity of the Tube Wall: Capacitance

A tube in which the walls are rigid offers a fixed amount of space within it,
hence the volume of fluid filling it must also be fixed, assuming, here and
throughout the book, that the fluid is incompressible. By the law of conser-
vation of mass, flow rate q1 entering the tube must equal flow rate q2 at exit.
There is thus only one flow rate q through the tube, which may vary at dif-
ferent points in time depending on the applied pressure gradient, but at any
point in time it must be the same at all points along the tube. Indeed, the
relations between pressure gradient and flow considered in previous sections
were all of this type, where the flow rate q may be a function of time t but
not a function of position x along the tube (Eqs.2.3.4,2.4.6,2.5.11,14,19 and
Figs.2.5.3-6). Thus, the analyses and results of previous sections were all based
on the implicit assumption that flow is occurring in a rigid tube.

When flow is occurring in a nonrigid tube, two new effects come into play.
First, the volume of the tube as a whole may change, an effect known as
capacitance, again by analogy with the effect of a capacitor in an electric
circuit. Second, a local change of pressure in an elastic tube propagates like
a wave crest down the tube at a finite speed known as the wave speed. In a
rigid tube, by contrast, a local change of pressure takes effect instantaneously
everywhere within the tube. Consequently, the difference between flow of an
incompressible fluid in a rigid tube compared with that in an elastic tube can
also be expressed by saying that the wave speed is infinite in a rigid tube but
is finite in an elastic tube.

While both the effects of capacitance and wave propagation result from
elasticity of the tube wall, there is a fundamental difference between them,
which provides a basis for dealing with them separately. Under the effect of
capacitance there is a change in the total volume of the tube or system of
tubes. Under the effect of wave propagation there is no change in the total
volume of the system– a change of volume occurs only locally, as a local
bulge or narrowing, and then propagates down the tube. It is important to
emphasize, however, that while this difference makes it possible to separate the
two effects on theoretical grounds, it does not necessarily imply that the two
effects actually occur separately in practice. Hence, in this and the next section
we deal with the effects of capacitance and wave propagation separately, with
the understanding that this does not imply that the two effects must or do
occur separately.

The key to the capacitance effect on flow in an elastic tube is that it affects
the total volume of the tube, therefore flow rate at entrance to the tube may
no longer be the same as that at exit because some of the flow at entry may go
towards inflating the tube while some of the flow at exit may have come from
a deflation of the tube. A convenient way of modelling this is to imagine flow
going into a rigid tube to which a balloon is attached such that fluid has the
option of flowing through the tube as well as inflating the balloon as depicted
schematically in Fig. 2.6.1. The choice of a rigid tube is essential in order to
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eliminate the possibility of local changes in volume that would occur in wave
propagation. Thus, the model depicts change in total volume only, consistent
with the capacitance effect in isolation.

p1

p0

p0
qc qr

q

p1

Fig. 2.6.1. Capacitance effect of flow in an elastic tube can be modelled by flow into
a rigid tube with a balloon attached at one end. Flow rate q entering the system may
go into the balloon or into the tube or both. Pressure p1 at entry into the system is
equal to pressure prevailing inside the balloon. Pressure at exit from the rigid tube
is p0, the same as that outside the balloon.

Initially, we consider the entrance to the balloon to be at entrance to
the tube, so that pressure p1 at entry into the system is equal to pressure
prevailing within the balloon. Pressure outside the balloon and at exit from
the tube is p0. Flow through the tube and flow into the balloon are thus in
parallel, in the sense that they can occur independently of each other.

Flow through the tube, to be denoted by qr, is determined by the viscous
resistance R and by the pressure difference Δp, as found previously (Eq. 2.4.3),
namely

qr =
Δp

R
(2.6.1)

where

Δp = p0 − p1 (2.6.2)

For flow into the balloon we note first that the balloon is in an inflated state
when pressure inside the balloon is higher than pressure outside it, that is
when

p1 > p0, Δp < 0 (2.6.3)

If the volume of the balloon in this state is v, then the capacitance C which is
a measure of the compliance of the balloon is usually defined by the amount
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of change in the pressure difference Δp required to produce a change Δv in
the volume of the balloon, that is

C =
Δv

Δ(Δp)
(2.6.4)

The notation in the denominator emphasizes that it is not the pressure
difference Δp that produces the change in volume but a change in that pressure
difference. Also, in this form it is seen that a higher value of C represents a
balloon that requires less change in Δp to produce a given change in volume,
that is a balloon that is more elastic, or more compliant.

In coronary blood flow and blood flow in general the change in volume Δv
is not a useful entity to work with because it is not easily accessible. A more
useful entity is the capacitive flow rate qc representing the amount of flow
going into or out of the balloon, which can be related to Δv in the following
way. As before, we assume that fluid is incompressible, hence the only way to
change the volume of the balloon is to change the amount of fluid within it,
that is to have a nonzero flow rate qc going into or out of the balloon. If a
constant flow rate qc occurs over a time interval Δt, the corresponding change
in volume of the balloon will be

Δv = qcΔt (2.6.5)

Substituting this into Eq. 2.6.4 we then have

C =
qcΔt

Δ(Δp)
(2.6.6)

therefore

qc = C
Δ(Δp)

Δt
(2.6.7)

More generally, if Δp is a continuous function of time, then qc correspond-
ingly becomes a function of time, given by

qc = C
d(Δp)

dt
(2.6.8)

This result shows clearly, again, that flow rate into the balloon depends not
on the pressure difference Δp but on the rate of change of that difference.
Also, by noting that total flow rate q into the system must be the sum of flow
rates into the balloon and the tube, that is

q = qc + qr (2.6.9)

we see clearly that, because of the capacitance effect, flow rate q into the
system is not necessarily equal to flow rate qr out of the system.
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If the pressure p0 at exit from the tube and outside the balloon is now
fixed, then flow into the system is controlled by only one remaining variable,
namely the input pressure p1. Under these conditions we consider the following
three scenarios.

If the input pressure p1 is constant, that is, if

Δp = Δp0 (2.6.10)

where Δp0 is a constant, then Eqs.2.6.1,8 give

qr =
Δp0

R
qc = 0 (2.6.11)

Thus, in this case flow is entirely through the tube. Flow into the balloon is
zero because the rate of change of Δp is zero (although Δp itself is not zero).
The volume of the balloon remains unchanged in this case. The balloon comes
into play only when Δp is a function of time, which occurs if p1 is a function
of time.

If, for example, p1 increases linearly with time, then the pressure differ-
ences across the tube and across the balloon will also increase linearly with
time, say

Δp =
Δp0

T
t (2.6.12)

where Δp0 is a constant as before, t is time, and T is a fixed interval of time
over which the change is taking place, which we introduce as in the previous
section in order that Δp0 retains the physical dimensions of pressure, then
Eqs.2.6.1,8 now give

qr =
Δp0

R

t

T

qc = C
Δp0

T
(2.6.13)

There is constant flow into the balloon in this case, because the rate of change
of Δp with time is constant. Flow through the tube increases linearly with
time as Δp increases with time. To compare the two graphically it is easier to
put them in nondimensional forms, namely

qr =
qr

Δp0/R
=

t

T

qc =
qc

Δp0/R
=

RC

T
(2.6.14)

The product RC is seen to have the physical dimensions of time and is usually
referred to as the “capacitive time constant”. We shall denote it by tc, in
analogy with the inertial time constant (tL), and define it by



60 2 Modelling Preliminaries

tc = RC (2.6.15)

thus the two flow rates in nondimensional form are finally given by

qr =
qr

Δp0/R
=

t

T

qc =
qc

Δp0/R
=

tc
T

(2.6.16)

Fig. 2.6.2 compares these flow rates at different values of tc. We recall that
higher values of tc (= RC) are associated with higher compliance, allowing
more flow to go into the balloon. Therefore, as seen in the figure, capacitive
flow is constant at a value in fact equal to tc/T , while resistive flow (flow
through the tube) increases linearly as t/T .
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Fig. 2.6.2. Comparison of resistive (solid) and capacitive (dashed) flow rates when
the driving pressure Δp is increasing linearly with time over a time interval T and
at three different values of the capacitive time constant tc. In all cases, capacitive
flow is constant since it depends on the rate of change of Δp, while resistive flow
increases linearly with time since it depends on Δp itself. Higher values of the
capacitive constant tc correspond to higher compliance, thus allowing more flow
into the balloon.

Finally, an important scenario to consider is that in which the pressure
differences across the tube and across the balloon is oscillatory, say

Δp = Δp0 sin ωt (2.6.17)

where Δp0 is a constant and ω is the angular frequency of oscillation. In this
case Eqs.2.6.1,8 give
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Fig. 2.6.3. Comparison of resistive (solid) and capacitive (dashed) flow rates when
the driving pressure Δp is an oscillatory function of time of period T . The resistive
flow (solid) has the same form as the driving pressure since inertial effects are not
included here and since it is unaffected by the value of the capacitive time constant
tc. The capacitive flow (dashed) in each cycle, on the other hand, is higher with
higher values of tc because of higher compliance of the balloon.

qr =
Δp0

R
sin ωt

qc = Δp0ωC cos ωt (2.6.18)

As expected, both qc and qr are oscillatory functions of time, with the same
frequency as the driving pressure, namely ω. To compare the two it is more
appropriate to put them in nondimensional forms, namely

qr =
qr

Δp0/R
= sinωt

qc =
qc

Δp0/R
= ωtc cos ωt (2.6.19)

The two flows are compared graphically in Fig. 2.6.3, where it is seen that how
much of the flow goes into the balloon in each cycle depends on the value of
the capacitive time constant tC . As in the previous case, higher values of the
tc correspond to higher compliance, thus allowing more flow into the balloon.
The resistive flow, on the other hand, is unaffected by the value of tc and
has the same form as the driving pressure, noting that inertial effects are not
included here.

The results of this section illustrate the important role that capacitance
plays in the dynamics of oscillatory flow in a compliant system, and hence its
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important role in the dynamics of the coronary circulation. While the struc-
ture of the coronary vascular system is far more complicated than the simple
system in Fig. 2.6.1, the compliance of the system is known to play a role
similar to that depicted in Fig. 2.6.1. A key question in the coronary circu-
lation is how much of the oscillatory component of coronary blood flow goes
into simply inflating and deflating the volume of the system, and how much
goes into forward flow? This question is not properly addressed in the exam-
ple of Fig. 2.6.1 because the driving pressure used here is a simple harmonic
(Eq. 2.6.17) which produces only symmetrical back and forth flow in the rigid
tube of Fig. 2.6.1. In coronary blood flow the driving pressure is a more com-
plicated waveform which has a net forward component and some harmonic
components. Because the forward and the oscillatory parts of the flow are not
entirely separable from each other, capacitance of the system affects both,
and much of the work in this subject is aimed at determining the nature and
magnitude of this effect [98, 97].

2.7 Elasticity of the Tube Wall: Wave Propagation

As stated in the previous section, a fundamental difference between flow in a
rigid tube and flow in an elastic tube is that a local change of pressure in a
rigid tube is transmitted instantaneously to every part of the tube while in
an elastic tube the change is transmitted with a finite speed. The reason for
this is that a local increase in pressure in an elastic tube is able to stretch the
tube wall outward, forming a local bulge, and when the change in pressure
subsides, the bulge recoils and pushes the excess fluid down the tube [124].
The increase in pressure and the bulge associated with it propagate down
the tube like the crest of an advancing wave. This scenario is not possible
in a rigid tube because fluid in that case cannot stretch the tube wall, and
because, as stated earlier, we assume throughout this discussion that the fluid
is incompressible. It is for these two reasons that the local change in pressure
in a rigid tube is transmitted instantaneously to every part of the tube. Wave
propagation is not possible in a rigid tube.

If a change in pressure occurs at some interior position along an elastic
tube, the change will propagate equally in both directions, towards both ends
of the tube, as illustrated in Fig. 2.7.1. A scenario of more practical interest,
however, is that in which a change in pressure occurs at one end of the tube
and propagates in one direction towards the other end, which happens, for
example, when a pump is placed at one end of a tube to drive the flow, or
simply when there is a change in the pressure difference driving the flow. In
this case wave propagation is in only one direction, namely from entrance to
exit, as illustrated in Fig. 2.7.2, and this is the case we discuss in what follows
under the general heading of wave propagation. However, the possibility exists
that a wave propagating in one direction may be totally or partially reflected
by an obstacle [221], thus leading to a secondary wave moving in the opposite
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Fig. 2.7.1. A local change in pressure at an interior point in an elastic tube will
propagate equally in both directions, towards the two ends of the tube.

direction as illustrated in Fig. 2.7.3. This will be discussed later in the book
under the heading of wave reflections. Thus, in this section we consider only
a primary wave moving from one end of an elastic tube to the other end.

Fig. 2.7.2. A wave propagation scenario of more practical interest is that in which
a change in pressure occurs at one end of a tube and propagates to the other end.
This occurs, for example, when flow is driven by the stroke of a pump at the tube
entrance, or simply when there is a change in the pressure difference driving the
flow.

When considering flow in an elastic tube, it is useful to distinguish between
wave motion and fluid motion. If the flow is driven by an increase in pressure
at the tube entrance, for example, then wave motion refers to the forward
motion of the local swelling or bulge in the tube caused by the increase in
pressure, as illustrated in Figs. 2.7.2, 3, much like the motion of the crest of a
wave on the surface of a lake. The speed at which the bulge advances along
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the tube is referred to as the wave speed. Fluid motion, on the other hand,
refers to the motion of fluid elements within the tube, associated with that
wave motion. As the wave crest passes each position along the tube, fluid
elements at that location are first swept towards the local bulge in the tube,
as illustrated schematically in Fig. 2.7.4, and then as the wave passes and the
bulge subsides they are swept back by the decreasing pressure. The situation
is again much the same as that experienced by a floating or submerged body
swept by the passage of the crest of a wave on the surface of a lake.

Fig. 2.7.3. A wave moving in one direction along an elastic tube may be reflected
totally or partially by an obstacle, resulting in a secondary wave moving in the
opposite direction.

The wave speed c in an elastic tube depends on the elasticity of the tube,
a simple measure of that elasticity being the Young’s modulus E, sometimes
also referred to as the modulus of elasticity. The value of c also depends on
the diameter d of the tube and its wall thickness h, and on the density ρ of
the fluid. An approximate formula for the speed in terms of these properties
is the so called Moen-Korteweg formula [168, 135, 34, 141]

c =

√
Eh

ρd
(2.7.1)

The formula is only approximate because it does not take into account some
dependence of the wave speed on viscosity of the fluid. Also, the formula is
based on the assumption that the wall thickness h is small compared with the
tube diameter. Despite these limitations the formula can be used to provide
an estimate of the wave speed in the cardiovascular system. This is possible
if it is further assumed that an average wall-thickness-to-diameter ratio h/d
above can be taken for the entire system, which leaves c dependent on E and
ρ only. Thus, taking E = 107 dyne/cm2, ρ = 1 g/cm3, and h/d = 0.1, we find
c = 1000 cm/s which, in order of magnitude, is a representative estimate of
the wave speed in the cardiovascular system.

If the pressure at the entrance of an elastic tube does not merely rise
once but rises and falls in an oscillatory manner, the result is a train of wave
crests moving in tandem along the tube, the distance between two consecutive
crests being referred to as the wave length L, as illustrated in Fig. 2.7.5. Fluid
motion within the tube then consists of back and forth movements everywhere
along the tube as consecutive wave crests pass by. This situation provides a
basic working model for flow in the cardiovascular system where the driving
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Fig. 2.7.4. As a wave crest passes each position along an elastic tube, fluid elements
at that location are first swept towards the local bulge in the tube and then, as
the crest passes and the bulge subsides, they are swept back by the decreasing
pressure. This fluid motion is to be distinguished from the wave motion, illustrated
in Figs. 2.7.1–3, which is concerned with only the motion of the wave itself. Fluid
motion is shown above only schematically in order to illustrate the difference between
fluid motion and wave motion, the motion of fluid elements is actually considerably
more complicated.

pressure generated by the heart rises and falls in a periodic manner. If the
frequency of oscillation is f cycles/s (Hz), then the wave length is related to
the wave speed by

L =
c

f
(2.7.2)

P0(t)

L

Fig. 2.7.5. If the pressure at the entrance of a tube does not change only once but
continuously, in an oscillatory manner, the result is a train of wave crests moving
along the tube, or what is commonly referred to as wave propagation. The distance
L between two consecutive crests is referred to as the wave length.

If the frequency of oscillation of the pressure pulse generated by the heart
is taken as 1 Hz, then an estimate of the wave length based on the above
estimate of the wave speed is L = 1000 cm. The wave length is shorter at
higher frequency, being only 500 cm at a frequency of 2 Hz. More important,
the pressure pulse generated by the heart is actually a composite wave con-
sisting of many so called harmonic components. Each harmonic component is
a perfect sine or cosine wave but has a different amplitude and different fre-
quency. The frequency of the pressure pulse generated by the heart represents
only the so-called fundamental frequency, that is, the frequency of the first
harmonic component which is referred to as the fundamental harmonic. The
frequency of the second harmonic is double the fundamental frequency, and
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the frequency of the third harmonic is three times the fundamental frequency,
and so on. Thus, the higher harmonics have increasingly shorter wave lengths.

Finally, wave speed and wave length are affected by the degree of elasticity
of the vessel wall, via the value of Young’s modulus E in Eq. 2.7.1. More rigid
walls have higher values of E and therefore lead to higher wave speeds and
higher wave lengths, which is relevant to blood vessels as they become more
rigid, generally with age or more locally because of disease. In the limiting
case of a totally rigid tube, E is infinite and hence both the wave speed and
wave length become infinite. Wave propagation is therefore not possible in a
rigid tube, clearly because a local increase in pressure cannot stretch the tube
radially outward and thereby start the propagation process. Nevertheless, it
is sometimes convenient to think of wave propagation in a rigid tube as one
in which the wave speed is infinite, with a change in pressure at one end
reaching all parts of the tube with infinite speed, that is instantaneously, as
stated briefly in the previous section. Indeed, if the driving pressure at the
entrance of a rigid tube changes in an oscillatory manner, the entire body of
fluid within the tube oscillates back and forth in unison, which is not to be
confused with wave propagation [221].

One of the most important effects of wave propagation in an elastic tube
is the possibility of wave reflections. Wave reflections arise when a wave meets
a change in one of the conditions under which it is propagating, such as
the diameter or elasticity of the tube, or more generally any change in the
resistance to wave propagation along the tube. It is important to distinguish
between the resistance to flow in a tube and the resistance to wave propagation
in that tube. The first represents the opposition to flow in a tube caused
by the viscous shear at the tube wall, and is usually referred to as “pure
resistance” or simply resistance. The second represents the opposition to wave
propagation in a tube caused by a combination of elasticity of the tube wall
and inertia of the fluid, and is usually referred to as reactance. We have noted
earlier, for example, that wave propagation is not possible in a rigid tube.
This can now be expressed more accurately by saying that a rigid tube has
infinite reactance. More generally, a less elastic tube has higher reactance and
offers more resistance to wave propagation than does a more elastic tube. The
combined effects of reactance and pure resistance are commonly referred to
as “impedance”. We shall see later that wave reflections in a tube arise at a
point where there is a change of impedance, which may be caused by a change
of diameter or elasticity of the tube. Impedance and wave propagation play
a central role in the dynamics of coronary blood flow and they are explored
more fully in later chapters.

2.8 Mechanical Analogy

The mechanics of flow in a tube or a system of tubes can be identified, by
analogy, with the basic mechanics of a solid object in motion under the influ-



2.8 Mechanical Analogy 67

ence of certain forces and conditions. Indeed, both situations are governed by
the same laws of physics, and it should not be surprising that the analytical
descriptions of their mechanics are analogous. What is different between the
two situations, and what makes the analogy useful, stems from a difference
not in the governing laws but in the type of forces and conditions involved
and in the corresponding variables used in the two cases.

Thus, in the classical mechanics of a solid object, the familiar mass-
damper-spring system is used in which an applied force may be opposed by
a spring resistance proportional to the displacement of the object, a damper
(or dashpot) resistance proportional to the rate of change of displacement
(or velocity), and to an inertial resistance proportional to the second rate of
displacement (or acceleration) [139, 76]. While in fluid flow these forces and
conditions are not present in the same form, they are present in equivalent
forms which obey the same governing laws, hence the basis for the analogy.
For example, in fluid flow the capacitance of a tube or a system of tubes plays
the role of the spring in the classical mechanics system, the viscous resistance
between fluid and the tube wall plays the role of the damper, and the inertia of
the fluid plays the role of the inertia of the solid object. These properties have
already been discussed in earlier sections, what is required in this section is
only to show how they translate into the properties of the classical mechanics
system. The translation is not a direct one because the basic variables used
in the classical mechanics system, namely mass, displacement and rates of
displacement, are not readily available or convenient to work with in the fluid
flow system.

Before we carry out this translation it is important to point out that the
mechanical analogy has been used extensively in the modelling of coronary
blood flow because the classical mechanics of a solid object are familiar and
well understood. A model that can be expressed in terms of these mechanics,
therefore, has the prospect of unveiling the unknown properties of the coronary
circulation in terms which are familiar and well understood. In other words,
the analogy is useful because the properties and behaviour of the mechanical
system are more familiar and its elements more easily identified than the
properties and elements of the fluid system. A potential for error is entailed in
this modelling process, however, not because of any inaccuracy in the analogy
but because elements of the coronary circulation required for the application of
this analogy are not as easily identified as they are in a single tube. Thus, at the
core of this modelling process is the fundamental “lumped model” assumption
already discussed in Section 2.2, namely that the properties of many millions
of tube segments in the coronary circulation can be represented collectively
by those of an “equivalent” single tube. While many modelling studies have
focused on the likely values of these lumped properties [111, 49, 59, 40, 121, 32,
102, 33, 195, 107, 98, 97]– capacitance, resistance, and inertance– the greater
potential for error remains in the underlying assumption that these lumped
properties actually exist. In other words, the mechanical analogy provides a
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mechanical model of the coronary circulation only on the assumption that the
elements being modelled actually exist in the coronary circulation.

Furthermore, the behaviour of the classical mechanics system depends on
a clear relation between the mass, the spring, and the damper. This relation
is not known in the coronary circulation and must therefore be assumed in
any modelling process. The effect of capacitance in the coronary circulation,
for example, is produced by a change in the caliber, and hence the volume,
of some coronary arteries, resulting in a change in the overall volume of the
system [191, 51, 184, 110, 96, 97]. But at the same time this change in diameter
also alters the resistance to flow in these vessels. The relation between these
two effects is not known. In the classical mechanics system, by contrast, the
elements representing capacitance and resistance are entirely separate and
have no effect on each other. A related issue is the extent to which the basic
elements of capacitance, resistance, and inertance are in series or in parallel
in the coronary circulation. In the classical mechanics system this is known a
priori, but not so in the coronary circulation. Some studies have attempted
to deal with these issues by taking more than one lumped element of each
type, that is, more than one resistance and more than one capacitance, for
example, and by placing them in different combinations of series and parallel
arrangements [24, 36, 91, 115].

Despite these difficulties, the mechanical analogy is a useful tool in mod-
elling the coronary circulation because the analogy itself, as it applies to each
individual element, is clearly valid. Thus, the relation between the flow rate
q and pressure drop Δp in a tube, derived in Section 2.5 (Eq. 2.5.1), namely

Δp = L
dq

dt
(2.8.1)

where L is the inertance, or inertial constant, of a bolus of fluid within the
tube (Eq. 2.5.5), was shown in that section to be equivalent to the basic law
of motion

F = m
du

dt
(2.8.2)

where m is the mass of a solid object in motion,u is its velocity, and F is
the force acting on it. The analogy between the two equations is apparent
and the correspondence between the two situations is illustrated in Fig. 2.8.1.
The driving pressure difference Δp in the fluid flow system corresponds to
the acting force F in the classical mechanics system, while the inertance L
corresponds to the mass m, and the flow rate q corresponds to the velocity u.
In both cases the underlying law is “force equals mass times acceleration”.

Similarly, the viscous resistance to flow in a tube, discussed in Section 2.4,
and the resulting relation between the pressure difference Δp and the flow
rate q, namely (Eq. 2.4.3)

Δp = Rq (2.8.3)
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m m

Δp=L
dq
dt

F=m
du
dt

Fig. 2.8.1. The mechanical analogy between flow in a tube (bottom) and the mo-
tion of a solid object in classical mechanics (top). The driving pressure difference
Δp in the fluid flow system corresponds to the acting force F in the classical me-
chanics system, while the inertance L corresponds to the mass m, and the flow rate
q corresponds to the velocity u. In both cases the underlying law is “force equals
mass times acceleration”.

Δp=Rq

F=fu

Fig. 2.8.2. Mechanical analogy between the viscous friction at the interface between
fluid and tube wall, represented by velocity gradient at the tube wall (bottom), and
the friction law in classical mechanics at the interface between two solid objects
(top). Here the pressure difference Δp in the tube corresponds to the driving force
F in the classical mechanics system, the flow rate q corresponds to the friction
velocity u, and the viscous resistance R corresponds to the friction coefficient f .
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where R is the resistance to flow due to viscosity (Eq. 2.4.4), is analogous to
the classical law of friction at a solid-solid interface

F = fu (2.8.4)

where f is the coefficient of friction at the interface, u is the relative velocity
between the two surfaces, and F is the driving force. Again, the analogy
between the two equations is apparent, and the two situations are illustrated
in Fig. 2.8.2. Here the pressure difference Δp corresponds to the driving force
F and the flow rate q corresponds to the velocity u, as before, and the viscous
resistance R corresponds to the friction coefficient f .

Finally, the capacitance of an elastic tube, discussed in Section 2.6, and
the resulting relation between the pressure difference Δp and the change in
volume Δv, namely (Eqs. 2.6.4, 6)

Δ(Δp) =
1
C

Δv (2.8.5)

q v

Δv

F

Δx
F=kΔx

ΔvΔp=
1
C

Fig. 2.8.3. Mechanical analogy: between the capacitance effect of flow in an elastic
tube, here represented by a balloon, and the stretch of a spring according to Hooke’s
law. The pressure difference Δp in the flow system corresponds to the applied force
F in the spring system, the change in volume Δv of the tube/balloon corresponds
to the change in length Δx of the spring, and 1/C in the flow system corresponds to
the spring constant k, where C is a measure of the compliance of the tube/balloon,
as defined by Eq. 2.6.4.
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=
1
C

∫
qdt; Δv =

∫
qdt (2.8.6)

where C is the capacitance of the tube, is analogous to the classical Hooke’s
law for an elastic spring, namely

F = kΔx (2.8.7)

= k

∫
udt; Δx =

∫
udt (2.8.8)

where k is the spring constant, Δx is the spring extension, and F is the applied
force. In the integral terms above, the spring extension is expressed in terms
of the velocity u with which the spring is being extended, and the change in
volume Δv of the elastic tube/balloon is expressed in terms of the flow rate q.
The analogy between the two equations is apparent, with Δp corresponding
to the applied force F as before, the change in volume Δv in the flow system
corresponding to the change in length Δx of the spring, and 1/C in the flow
system corresponding to the spring constant k. In the integral terms the flow
rate q is seen to correspond to the velocity u in the mechanical system, as in
Eqs. 2.8.1, 2. The analogy between the two situations is illustrated in Fig. 2.8.3.

2.9 Electrical Analogy

The dynamics of the coronary circulation can also be modelled, by analogy,
in terms of an electric circuit with the basic elements of resistance, capaci-
tance, and inductance. This analogy is subject to the same limitations as the
mechanical analogy discussed in the previous section, namely the assumption
that these elements can be identified with lumped properties of the coronary
circulation. Nevertheless, electrical analogies have been used extensively in
the study of the coronary circulation [24, 36, 91, 115] because electric circuits
are much easier to manipulate, both analytically and experimentally, and are
thus a convenient modelling tool. A model of the coronary circulation based on
the electrical analogy can actually be built and tested experimentally. This
feature of the electrical model makes it particularly useful in the study of
pulsatile flow.

In the electrical analogy the electric potential, or voltage, V corresponds
to the pressure difference Δp in the flow system, and the electric current I
along a conductor corresponds to the flow rate q along a tube. The basis of
the analogy is that the relation between the voltage and current across an
inductor L, namely [43]

V = L
dI

dt
(2.9.1)

is analogous to the corresponding relation between the pressure difference
and flow rate in a tube, as in Eq. 2.8.1, where the inertia of the fluid produces
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Δp=L
dq
dt

V=L
dI
dt

V L

Fig. 2.9.1. Electrical analogy: between flow in a tube and the flow of current in an
electric circuit, in the presence of inductance L in both systems. The driving pressure
difference Δp in the fluid flow system corresponds to the voltage V in the electrical
system, and the flow rate q corresponds to the electric current I . Inductance in the
fluid flow system is caused by a change in the flow rate, which is associated with
acceleration or deceleration of a mass of fluid, while inductance in the electrical
system is due to change in the current, which is associated with acceleration or
deceleration of a mass of electrons.

an effect analogous to that of an inductor, as discussed in Section 2.5. The
analogy is illustrated in Fig. 2.9.1.

Similarly, the relation between the voltage and current across a resistor R,
namely [43]

V = RI (2.9.2)

is analogous to the relation between the pressure difference and flow rate in
a tube, as in Eq. 2.8.3, where viscous friction between fluid and the tube wall
produces an effect analogous to that of a resistor, as discussed in Section 2.4.
The analogy is illustrated in Fig. 2.9.2.

Finally, the relation between the voltage across and current into a capacitor
namely [43]

V =
1
C

ΔQ (2.9.3)

=
1
C

∫
Idt; ΔQ =

∫
Idt (2.9.4)

where C is the capacitance and ΔQ the accumulated electric charge on the
capacitor, is analogous to the relation between the pressure difference and
flow rate into an elastic tube, as in Eqs.2.8.5,6. Here, because of the elasticity
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Δp=Rq

V=IR

V R

Fig. 2.9.2. Electrical analogy: between flow in a tube and the flow of current in an
electric circuit, in the presence of resistance R in both systems. The driving pressure
difference Δp in the fluid flow system corresponds to the voltage V in the electrical
system, and the flow rate q corresponds to the electric current I . Resistance in the
fluid flow system is due to loss of kinetic energy because of viscous friction between
fluid and the tube wall, while that in the electrical system it results from a loss
of electric energy within the resistor. Interestingly, in both cases the lost energy is
converted to heat.

of the tube wall, the accumulated volume of fluid within the tube can change
in analogy with a change in the electric charge accumulated on the capacitor.
The analogy is illustrated in Fig. 2.9.3.

In summary, the electrical, mechanical, and fluid flow systems have three
characteristics in common, namely inductance, resistance, and capacitance,
and the dynamics of each system involves two principal variables, namely
a driving force and consequent flow or motion. In the electrical system the
three elements are an electric inductor, a resistor, and a capacitor, character-
ized respectively by their intrinsic constants L, R, C. The driving force is the
voltage V , the motion is represented by the flow of electric current I, and the
governing relations between these variables are:

inductance V = L
dI

dt
(2.9.5)

resistance V = RI (2.9.6)

capacitance V =
1
C

∫
Idt (2.9.7)

In the mechanical system the three elements are a moving object, a damper,
and a spring, characterized respectively by the mass m of the moving object,
the friction constant f of the damper, and the spring constant k. The driving
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q

V C

v

Δv

ΔvΔp=
1
C

ΔQV=
1
C

Fig. 2.9.3. Electrical analogy: between flow in a tube and the flow of current in
an electric circuit, in the presence of capacitance C in both systems. The driving
pressure difference Δp in the fluid flow system corresponds to the voltage V in
the electrical system, and the flow rate q corresponds to the electric current I .
Capacitance in the fluid flow system is due to a change in the volume v of fluid within
an elastic tube, here represented by an expandable balloon, while in the electrical
system it is caused by a change in the total electric charge Q on a capacitor. The
change in volume Δv in the fluid flow system is attained by a sustained flow rate
into or out of the balloon, while the change in electric charge ΔQ on the capacitor
is attained by a sustained current into or out of the capacitor.

force is an applied force F , the motion is represented by the velocity u of the
moving object, and the governing relations between these variables are:

inductance F = m
du

dt
(2.9.8)

resistance F = fu (2.9.9)

capacitance F = k

∫
udt (2.9.10)

In the fluid flow system, finally, the three elements are the mass of fluid in a
tube, viscous resistance between moving fluid and the tube wall, and capac-
itance produced by the elasticity of the tube wall, characterized respectively
by their intrinsic constants L, R, C. The driving force is the pressure differ-
ence Δp driving the flow, the motion is represented by the flow rate q, and
the governing relations between these variables are:

inductance Δp = L
dq

dt
(2.9.11)
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resistance Δp = Rq (2.9.12)

capacitance Δp =
1
C

∫
qdt (2.9.13)

For flow in a tube of length l and radius a, assuming Poiseuille flow throughout,
the resistance and inductance constants are respectively given by (Eqs. 2.4.4,
and 2.5.5)

R =
(

8μl

πa4

)
; L =

(
ρl

πa2

)
(2.9.14)

while the capacitance constant C is determined by the elasticity of the tube
wall.

2.10 Summary

Modelling of the coronary circulation is necessary because experimental access
to the dynamics of the system is severely limited. An understanding of the
dynamics of coronary blood flow is important because in the absence of such
understanding a purely static view of the system continues to be used in the
clinical setting. In a static view of the system the primary concern is whether
vessels are fully open or obstructed by disease. In a dynamic view the concern
is more broadly based on all factors that may affects the dynamics of the
system, the patency of the conducting vessels being only one such factor.

In a lumped model of the coronary circulation the complex vasculature of
the system is essentially replaced by an “equivalent” single tube with “lumped
parameters” that are assumed to represent the system as a whole. The model
is tested against any measurements that can be obtained from the coronary
circulation, and parameter values are adjusted in search of agreement. De-
spite difficulties associated with this concept, the lumped model has been an
invaluable tool in the study of the coronary circulation by establishing some
of its basic features.

The mechanics of flow in a tube is at the core of all lumped (as well as
unlumped) model analysis. The analysis is usually based on the assumption
of fully developed flow, ignoring flow in the entrance region of the tube where
flow is in a developing phase. This assumption is fairly difficult to deal with
because it is necessary, yet not easily justified.

Fluid viscosity together with the condition of no-slip at the tube wall
produce “resistance” to steady flow in a tube. This resistance increases as the
inverse of the tube radius to the fourth power, which means that if the radius
of the tube is reduced by a factor of 2, the resistance to flow increases by a
factor of 16. This dramatic relationship between vessel radius and resistance
to flow figures heavily in clinical practice. It must be remembered, however,
that coronary blood flow is not steady but pulsatile, where other forms of
resistance exist.
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When fluid is accelerated or decelerated, fluid inertia gives rise to another
form of resistance to flow, commonly referred to as inductance. The immedi-
ate effect of inductance is to delay the response of the fluid to a change in
the driving pressure difference. The flow rate does not “match” the prevail-
ing pressure difference immediately but with a time delay. In that “transient
state” the flow rate is attempting to reach a value appropriate for the pre-
vailing pressure difference, and it ultimately does if the prevailing pressure
difference does not change any further. But if the driving pressure difference
continues to change, as in oscillatory flow, the flow rate never reaches that
appropriate value. It falls short and lags behind, more so at higher values of
the inertial constant.

The “capacitance” of a tube or system of tubes arises when the tube wall
is elastic (or possibly viscoelastic) and hence the volume of fluid contained
within the tube or system of tubes can change. Capacitance is known to play
a significant role in the dynamics of coronary blood flow but a definitive model
of that role has yet to be formulated.

In addition to giving rise to capacitance, another fundamental consequence
of elasticity of the tube wall is that of wave propagation. In an elastic tube,
a change of pressure at one end of the tube does not reach the other end
instantaneously as it does in a rigid tube. Instead, it stretches the elastic wall
of the tube locally at first and then propagates down the tube like the crest
of a wave on the surface of a lake. In pulsatile flow this wave propagation is
continuous in space (along the tube) and in time. Inductance of the fluid and
capacitance of the tube combine to form a new type of resistance, namely
“resistance to wave propagation”, usually referred to as “reactance”, to be
distinguished from “pure resistance” caused by viscous shear at the tube wall.
Reactance and pure resistance combine to form the “impedance”, which plays
a key role in “wave reflections”, all of which will be discussed more fully in
later chapters.

Flow in an elastic tube is governed by the same physical laws and the
same equations as the motion of a mass in a mass-damper-spring system.
By this so-called “mechanical analogy”, inertia of the fluid in the fluid flow
system is equivalent to the inertia of the mass in the mechanical system,
viscous resistance in the fluid flow system is equivalent to resistance due to
damper friction in the mechanical system, and capacitance of the tube in the
fluid flow system is equivalent to the stretch of the spring in the mechanical
system. The analogy is useful because the elements of the mechanical system
are more familiar and their functions can be visualized more clearly than those
in the fluid flow system.

Flow in an elastic tube is also analogous to the flow of current in an electric
circuit. This so-called “electrical analogy” has been used widely in studying
the dynamics of the coronary circulation and forms the basis and “language”
of many lumped models of the system. Indeed, the terminology used for ele-
ments of resistance, inductance, and capacitance in the fluid flow system has
been taken directly from these familiar elements in electrical systems, thus
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correspondence between the two is fairly clear. A great advantage of the elec-
trical analogy is the availability of well developed mathematical analysis of
electric circuits of a wide range of complexity which would be fairly difficult
to formulate in terms of either the fluid flow or the mechanical system.


