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Abstract Let ;? > 5 be a prime. Let X be the reduction of the modular curve X{p) in 
characteristic i (with i^p). Aside from two known cases in characteristic £ = 3 
(with /> = 7,11), we show that the full automorphism group of X is PSL(2,p). 

1. Introduction 
Let £ and p be distinct primes. LetX = X£{p) be the reduction of the mod

ular curve X{p) in characteristic i. We laiow that PSL{l^p) acts onX{p). 
Our main result is: 
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Theorem 1.1. Assume that p > 7. 

1 Aut{X) = PSL(2^p) unlessp — lor\\ and£ = 3. 

2 Aut{X3{l))=PGU{3,3). 

3 Aut{X3{n))^Mn-

In [Adl] it was shown that M\\ is contained in Aut{X2{ll)). Then Raj an 
[Raj] showed that M\\ is the full automorphism group. 

If p = 7 and i = 3, then X is the Klein quartic. It is well Imown that X is 
isomoiphic to the Hennitian curve and so has automorphism group as stated. 
See [Elk] for more details in this case. 

Ifp < 7, then X has genus zero and so there is nothing to be done. 
This problem was considered by Ritzenthaler [Rit] who proved the result 

under the additional assumptions that/? < 13 or thatX is ordinary (which is not 
always the case) and £>3, He also obtained more infonnation in the cases he 
did not settle. Goldstein and Guralnick [GO] have investigated the analagous 
question for the reduction ofX{n) with n> 6 composite (in any characteristic 
not dividing n). The result is the same - the automorphism groups are as 
expected. 

The note is organized as follows. In Section 2, we recall some general facts 
about curves and in particular some results of Stichtenoth [Stl] that we will 
use. 

In Section 3, we gather some well known facts about X and prove some 
preliminary results about Aut{X). 

In Section 4, we prove the theorem. The main ideas in the proof are to show 
that if PSL{2^p) is not the full automorphism group, there must be a simple 
group containing it as a maximal subgroup. Moreover p^ does not divide the 
order of this group. We also have constraints on the size and structure of this 
simple group. At this point, we invoke the classification of finite simple groups 
and show that no simple group (except in the exceptional cases) satisfies the 
constraints. One can prove a weaker result without the classification - for 
example one can show that large primes cannot divide the order of the full 
automorphism group, but we do not see how to prove the fiill result without 
the classification. The fact that M\ \ does come up shows that one does need to 
loiow facts about simple groups. 

In fact, Ritzenhaler [Rit] did use the classification as well (but in that case, 
one can likely avoid its use). 

We note that the only properties of the modular curve we use are that it 
admits an action of PSL{2^p) with specified ramification data. 

We refer the reader to [Ser] and [St2] for general results on coverings of 
curves, inertia groups and the Riemann-Hurwitz formula. See [Gor] for group 
theoretic notation and results. 
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2. Automorphism Groups of Curves 

We first recall some general facts about coverings of curves. See [Ser] or 
[St2] for more details. 

Let C be a curve of genus g over an algebraically closed field of characteris
tic f > 0 and G a finite group of automorphisms of C. Then G has only finitely 
many nonregular orbits on C (i.e. orbits in which there is a nontrivial point 
stabilizer). Let ^ be a set of points of C containing one point for each nonreg
ular G-orbit. lfbeB,\QtI:= It, the inertia group (or stabilizer of Z?). Then the 
Sylow £ subgroup I\ of/ is normal in / and I/I\ is cyclic. Moreover, we have 
a sequence of higher ramification groups I = Io>I\ > "•>Ir> ^r+\ = 1 with 
/////_i-i an elementary abehan ^-group. Set 

Let the quotient curve C/G have genus h. Then the Riemann-Hurwitz formula 

2 ( g - l ) / | G | = 2 ( A - l ) + £ p ( Z > ) . 
beB 

We next recall some bounds on automorphism groups. For the first, see [Stl]. 
The second follows easily from the Riemann-Hurwitz formula. 

Theorem 2.1. (^Stichtenoth) Let C be a curve of genus g > 1 over an alge
braically closed field of characteristic /. Let^ =Aut{C). 

1 1̂1 < I6g'^ unless C is the Hennitian curve 

/ + ; ; = X̂" + l ( ^ > l , r > 3 ) 

of genus g = ^l^{r — I), where n is a positive integer. In this case, 
Ml< 75g\ 

2 If C/A has positive genus or the cover C —> C/A has at least 3 branch 
points, 2 of the inertia groups having order larger than 2, then \A\ < 
8 4 ( g - l ) . 

Theorem 2.2. Let C be a curve of genus g> \ over an algebraically closed 
field of characteristic I. Let A =Aut{C). Let s be a prime different from I. Let 
S be a subgroup of A of order s^. 

1 IfC —> C/Sis unramified, then s"^\{g—l). 

2 Ifs is odd and S has exponent s^, then s"^~^| (g — 1). 

3 Ifs = 2 and S has exponent 2^, then s"^~^\2{g— 1). 
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3. The Modular Curve 
Fix distinct primes £^p with p>l. Let X = Xi(p). Then G = PSL{2^p) acts 

onX. The following is well known (see for example [Mor]): 

Lemma 3.1. Set Y = X/G, Then Y has genus zero and 

1 if£>3, then X —^Y is branched at 3 points with inertia groups of order 
2,3 andp; 

2 if £ — 3, then X -^Y is branched at 2 points with inertia groups S^ and 
1J/P - moreover, in the first case the second ramification group is trivial; 

3 if i = 2, then X —^ Y is branched at 2 points with inertia groups A4 and 
Z/p - moreover, in the first case the second ramification group is trivial. 

In the two cases when G is not the full automorphism group A one can also 
describe the inertia and higher ramification groups. In each case X3 {p) with 
/> = 7,11, there is a branch point with inertia group of order p and another 
branch point with inertia group E.iJjjZ) where E is extraspecial of order 27 
and exponent 3 when p — 1 and E is elementary abelian of order 9 when p — 
11. Moreover, X3 (11) is ordinary and the second higher ramification is trivial. 

X3(7) is not ordinary. If/ is the wild inertia group, then the sequence of 
higher ramification groups is / ,^,Z,Z,Z, 1, where Z is the center of ^ (of 
order 3). Moreover, the Jacobian of X has no 3-torsion. 

The next result is an immediate consequence of the first result and the 
Riemann-Hurwitz fonnula. 

Corollary 3.2. X has genus g = {p -^2){p — ?>){p — 5)/24. Moreover, g—\ = 
{p-\){p+\){p-6)/lA. 

Let A be the full automorphism group of X. Let P be a Sylow /^-subgroup 
of G and N = NG{P) (of order />(/? — 1 )/2). We note from the ramification data 
that P has precisely {p—\)/2 fixed points onX and that N acts transitively 
on them. Note that N — PD where D is cyclic of order {p — l)/2 and acts 
transitively on the fixed points ofP onX. 

Lemma 3.3. Let P be a Sylow p-subgroup ofG. 

(i) P is a Sylow p-subgroup of A. In particular, p^ does not divide \A\, 

(ii) \NA{P):CA{P)\ = {P~1)/2. 

(Ui) \CA{P)\<{p''-p)/e. 

(iv) CA (P) is contained in an inertia group. 

Proof Let M be the nonnalizer of P in ̂ 4. Then M acts on the fixed points of P 
and so M = DM\ where M\ is the inertia group (in M) of some point fixed by 
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P. Since M\ is an inertia group and normalizes P, it follows that M\ centralizes 
P. Set C = CA{P). Then C == Mi{CnD) = Mi. Since C is normal in M, it 
follows that C fixes each of the {p—l)/2 points fixed by P. This also implies 
(ii) and (iv). 

Now consider X -^ X/C and let h be the genus ofX/C. We see that 

2 ( g - l ) > 2 | C | ( / j - l ) + ( ; ^ - l ) ( | C | - l ) / 2 , 

whence 

{p-\){p+\){p~6)/\2>\C\{p-5)/2-{p-\)/2, 

or 
[ ( p - l ) / 2 ] [ ( / - 5 ; , ) / 6 ] > | C | ( ; , - 5 ) / 2 , 

giving the desired inequality on |C| and proving (iii). In particular, p^ does not 
divide |C|. Let P < g be a Sylow subgroup of ^. If P ^ Q, then NQ{P) ^ P 
and so P is contained in a subgroup R of order p^. Any group of order p^ is 
abelian and so i? < C, a contradiction. This gives (i). D 

Note that/? is the only prime of size at least (/? — l) /6 that divides the order 
of the centralizer of P. 

We have also shown that Q (P) is contained in the inertia group of any point 
fixed by P. Thus, the inertia group in A of such a point is VCA (P) where V is 
an £-group. We shall not use this fact. We recall the following well known 
results about G. 

Lemma 3.4. IfH is a proper subgroup ofG, then \G\H\>p-\-\ unless p—\\ 
in which case \G\ H\ > 11. 

The next result applies to G but also to groups with a cyclic Sylow p-
subgroup. 

Lemma 3.5. Let H be a group with a Sylow p-subgroup of order P such that 
NH{P) /Q-I (P) has order e. IfH acts faithfully as automorphisms on an r-group 
Rfor some prime r ^ p, then \R\ > r^. 

Proof There is no loss in assuming that P is normal in H. We loiow that P acts 
nontrivialiy on R/0{R), where 0(i?) = [R,R]R^ is the Frattini subgroup of R 
(see [Gor]). So we may assume that i? is an elementary abelian/>-group. There 
is no hami in assuming that R is irreducible and P acts nontrivialiy on R, The 
hypotheses imply that if a is a generator for P, then a has e conjugates in H, 
whence a has e distinct eigenvalues (after extending scalars) whence dimi^ > e 
as desired. D 

Lemma 3.6. Let Rbe a subgroup of A normalized by G. Then R contains G. 
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Proof. Suppose not. Since G is simple, this fo rcesRnG^ l . We can takeR to 
be a minimal counterexample. Thus, R is either an elementary abelian r-group 
for prime r or a direct product of simple groups. We consider the subgroup 
B — RG{di semidirect product). 

Now G acts faithflilly on X/R. Since the automorphism group of P^ is 
PGL{2Jc) and the automorphism group of an elliptic curve is solvable, this 
implies that X/R has genus at least 2. The Riemann-Hurwitz fonnula then 
implies that ( g - 1) > \R\{g{X/R) - 1) > |i?|, where g{X/R) is the genus of 
X/R. 

Suppose that R does not commute with G. If R is an r-group, then r 7̂  
p (since p^ does not divide the order of ^ ) . The smallest nontrivial module 
in characteristic r ^ p fox PSL{2^p) (or even the nonnalizer of P) has order 
^{P-\)I2 > 2(/'-i)/2 > ^3/24 > ĝ  a contradiction. 

IfR is a direct product of nonabelian simple groups, then either P normalizes 
each factor, whence the simple group PSL{2,p) does as well and so R is simple 
or there are at least/? factors. In the second case, \R\ > 60^ > g, a contradiction. 

So assume that R is simple. We could invoke the Schreier conjecture (and 
so the classification of simple groups at this point) by noting that G cannot act 
nontrivially on a simple group other than by inner automorphisms because the 
group of outer automorphisms is solvable. On the other hand/> does not divide 
\R\ and so G cannot act on R via inner automorphisms. 

We give an elementary argument avoiding this. Let W — RD where D — 
NG{P) is the Borel subgroup of G. Let 5* be a Sylow ^--subgroup of R for 
some prime s dividing \R\ (in particular, s ^ p). By the Frattini argument (or 
Sylow's theorem), W = RNw {S). In particular, we may assume that P < Nw {S) 
and that the normalizer ofP in Nw{S) acts as a group of order {p—\)/2on P. 
It follows by the previous lemma that either P centralizes iS* or jiSl > S^P~^^I'^. 

The last possibility is a contradiction as before. The first possibility implies 
that P centralizes a Sylow i'-subgroup. Repeating this argument for each prime 
s dividing |7 |̂ implies that P centralizes R, whence the nonnal closure of P does 
as well. Thus, G centralizes R, a contradiction to the minimality ofR. 

So we may assume that R commutes with G and so by minimality has prime 
order r. 

We consider the possibilities for the inertia groups of G on X/R. These are 
precisely IR/R < GR/R where / is an inertia group of RG on X. We identify 
GR/R with G. First consider the case where P <I. Then IR/R contains P, 
whence by the structure of inertia groups and the subgroup structure of G, 
IR/R = P. 

Similarly, if ^ = 2, we see that the other inertia group in G — GR/R will be 
A4. This implies that the genus of X/R is at least that of X, whence R~ I, 3. 
contradiction. 
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So ^ > 2. If r > 3, then the other inertia groups are either contained in G 
or wcQ RxJ with J < G. It follows that they project onto / in G. So G has 
the same inertia groups on X/R as on X, a contradiction as above (because the 
second ramification groups are trivial). 

So r < 3 and £> 2. If-̂  > 3, it follows that all ramification is tame and an 
easy computation using Riemann-Hurwitz shows that î  = 1, a contradiction. 

So r < 3 and £ = 3. IfJR/R = S2,WQ argue as above. The only remaining 
possibility is that JR/R has order 6r and nonnalizes the subgroup of order 
3. If r == 3, this implies that JR/R is dihedral of order 18. The Riemann-
Hurwitz foraiula implies that X/R has genus larger thanX, a contradiction. If 
r = 2, then since the Sylow 3-subgroup T of the inertia group has order 3, it is 
contained in G. Since we know the higher ramification groups for G, T2 = I 
(on X). It follows that T2 is self centralizing in the inertia group (see [Ser]), 
whence the inertia group has order 6, a case we have already handled. D 

Corollary3.7. G = NA{G). 

Proof. The previous result shows that Q(G) = 1. Thus, NA{G) embeds in the 
automorphism group of G. This is PGL{2,p). So NA{G) = G or is PGL{2,p). 
The latter implies that NA{P)/CA{P) has order p—\, contradicting Lemma 
3.3. D 

We can now show that A is almost simple - we will not use this in the rest 
of the paper. 

Corollary 3.8. Let A\ be any overgroup of G in A. Then A\ has a unique 
minimal normal subgroup S\ that is simple and contains G. In particular, A1 
embeds in the automorphism group ofS\. 

Proof Let TV̂  be a minimal nonnal subgroup of ^ 1. This is normalized by G 
and so contains G. This shows it is unique (since the intersection of two distinct 
minimal normal subgroups is trivial). Since A'' is characteristically simple, it 
must be a direct product of nonabelian simple groups. Since G <N,it follows 
that G normalizes each of the factors of N and so each must contain G. Since 
the factors intersect trivially, there is only one such factor, whence Nisd, simple 
nonabelian group containing G. D 

4. Proof of the Theorem 
We continue notation from the previous section. 

Lemma 4.L \A\ <l6g'^ or 1 = 3 andp = 7. 

Proof We note that for p > 7, G does not have a 3-dimensional projective 
representation in characteristic i. In particular, it cannot embed in the auto
morphism group of the Hermitian curve and so X is not the Hemiitian curve. 
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So we can apply the Stichtenoth result. If p = 7, we just note that the only 
Hermitian curve of genus 3 occurs in characteristic 3. D 

lfp — l,Xis the Klein quartic and the result is well known in this case. If 
p <1, there is nothing to prove. So we assume that p> II. Since the case 
£ — 3 and /> = 11 is done [Raj], we assume that ij^3 ifp = 1 1 . 

Let i? be a minimal overgroup of G in 4̂. Then, every nontrivial nornial 
subgroup ofR contains G. It follows by minimality that either i? is a minimal 
normal subgroup of i? (i.e. R is simple) or that G is normal in R. However, G 
is self normalizing in A. Thus, R is simple. 

We now go through the families of nonabelian simple groups and show (that 
aside from the exceptional cases) that no such R can exist. So we'll assume that 
p > 13 or I ^3 (and, of course, that p > II and I ^ p). We will frequently 
refer to the ATLAS for the infonnation we need. 

1 R^An. 

The smallest A^ containing G is with n = p-{-l except that PSL{2^ 11) 
embeds in ^ n . In that case though any subgroup of ^ n isomorphic to 
PSL{2,11) is contained in one isomorphic to Mi i, i.e. 7? is not a minimal 
overgroup. 

Note that^p+i contains an elementary abelian subgroup of order 2^^"^)/^, 
sobyTheorem2.2,either/ = 2or2(^-^)/^|^(;?-l)(j9-fl)(;?-6). Sim
ilarly, if 5 is odd, then either / - ^ or ̂ L(/̂ + )̂AJ-i | ^ ( ; ? - I)(j9+ l ) ( p - 6 ) . 
A quick check tells us that I = 2OY p = l, and that 1 = 3. Therefore 1 = 3 
and p = 7, which we're assuming not to be the case. 

2 Ris not a Chevalley group in characteristic p. 

Proof The only Chevalley group in characteristic p that does not have 
order divisible by p^ is PSL{2,p). 

3 Ris not a sporadic group (recall we're assuming that /? > 13 or / ^ 3). 

Our first test is as follows. If {R,p) is a valid pair, then \R\ must be ex-
actly divisible by p and divisible by ^p{p - I){p-^ I). By Theorem 2.1, 
we must also have \R\ < 16g'̂ . A quick computation leaves us with the 
following possibilities: 

R Mil ^12 A ^22 Â 23 II I3 M2A He Ru O'N 
P 11 11 11 11 23 17 19 23 17 29 31 
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Our plan now is to try to use Theorem 2.2 in order to show that / must 
be simultaneously two values (which of course is absurd) for as many 
of the above possibilities as we can. We will refer to the ATLAS for 
the information we need. For example, if R = M\2 and p = II, then 
g - 1 = 25; however, Mn has an elementary abelian subgroup of order 
2^ (implying that l~2 since 2^ 150) and an elementary abelian subgroup 
of order 3^ (implying that 1 = 3 since 3 f 25). The table below lists each 
possibility {R,p) with appropriate subgroups S and the associated critical 
quantities s"^~^\ 

^ - 1 
Mil 

Ml 2 

A 
M22 

M23 

J3 

J3 
M24 
He 
Ru 
O'N 

11 
11 
11 
11 
23 
17 
19 
23 
17 
29 

31 

25 
25 
25 
25 
374 
132 
195 
374 
132 
805 
1000 

3̂ 

cl 
^2 

^2 

clc^ 
c? 

^2 

c] 

3 
22 
22 

22 
23 

2" 
2^ 
23 

2" 
22 

3 

cf 

cf 
c| 
1 
cl cl 
^5 

^1 

3 

3 
3 
32 
32 

3 
5 
52 

7 

Here, we use the notation C2C2 to mean a group having a normal sub
group C2 with corresponding quotient C2, and £'5«,+ denotes the ex-
traspecial group of order 5" and exponent 5. 

We are left with the possibilities {M\ 1,11) and (Ji, 11). For the former, 
the table tells us that 7 = 3, which we're assuming not to be the case since 
p = \\. So let us consider (Ji, 11). J\ has subgroups of order 3,7,19, 
none of which divide 2(g— 1), therefore each of them fixes a point on 
X. Now at least two fix a point in common by the second part of Theo
rem 2.1, since |Ji| > 84(g— 1). Suppose that the subgroups of order 3 
and 7 do (the other two cases are similar). By Hall's theorem the corre
sponding inertia group contains a cyclic group of order 21; however, J\ 
contains no such group. 

4 7̂  is not an exceptional Chevalley group in characteristic s^ p. 

There are ten families of these: Gi.F^.E^.E-j.E^.^Bi.^D^.^Gi.^F^.^E^, 
whose orders are as follows. Here ^ is a power ois. 
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Group 

FA 

E(, 

El 

Ei 

^52 

'D, 

2G2 

^F4 

^E, 

Order 

? V - i ) ( ? ' - i ) 

^24(^12 _ i ) ( ^ 8 _ i ) ( ^ 6 _ i ) ( ^ 2 _ i ) 

^36(^12 _ i ) ( ^ 9 _ i ) ( ^ 8 _ i ) 

( ? f i - l ) ( ? 5 - l ) ( ^ 2 _ i ) / g , d ( 3 , 5 - l ) 

^63(^18 _ i ) ( ^ l 4 _ i ) ( ^ l 2 _ i ) ( ^ 1 0 _ , ) 

{q^-\){q<>-\){q^-\)/gcA{2,q-\) 

?120(^30_i)(^24_i)(^20_i)(^18_i) 
( ^ 1 4 _ i ) ( ^ l 2 _ i ) ( ^ 8 _ i ) ( ^ 2 _ i ) 

q\q^ + \){q-\) 

q'\q^+q' + \){q^-\){q'-\) 

q\q^ + \){q-\) 

? i V + i ) ( ? ' - i ) ( ? ' + i ) { ? - i ) 

«36(.l2_i)(„9 + ,)( 8 _ i ) 

Restriction on q 
None 

None 

None 

None 

None 

^ = 22"^+l 

None 

q = ^2m+{ 

g = 2^"'+^ 

None 
{q'-\)(q' + \){q^-l)/gcd{3,g-{-\) 

All the groups in this table are simple, except for G2(2),^52(2),^G2(3) 
and ^^4(2), which have simple subgroups of indices 2,4,3,2 respec
tively. 

Note that we can ignore ^^2, since the order o^^B2{q) is not divisible by 
3, implying that '^B2{q) does not contain PSL{2^p). 

Our first test is basically the same as our first test for the sporadic groups. 
The main difference is that we need some mechanism for bounding p\ 
this is provided by the fact that PSL{2,p) has no faithful linear repre
sentation in G¥{s) of degree less than {p— l ) /2. Therefore, if PSL{2,p) 
embeds into a group R having a faithfiil linear representation of degree 
d, we must have p <2d-\-l. The table below lists, for each of the ex
ceptional Chevalley groups (apart from '^Bj of course), the degree of a 
faithful linear representation it possesses, and the resulting bound on p: 
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Group Degree (d) Bound (2d-\-1) 
Gi 
FA 

EG 

El 
Es 

'D, 

'G2 
'F, 
'Ee 

1 
26 
27 
56 
248 
8 
7 
26 
27 

15 
53 
55 
113 
497 
17 
15 
53 
55 

Given a group R and a prime p, we need a bound on q, but this is easily 
provided by Theorem 2.1. 

Canning out the test leaves just one possibility: 

R = G2{?>),p=U. 

Fortunately this group is documented in the ATLAS, therefore we can 
easily eliminate it by playing the same game as we did for the surviving 
sporadic groups: 6^2(3) has elementary abelian subgroups of order 2^ 
and 3^, but 2(g— 1) = 98 is not divisible by either 2^ or 3. 

5 î  is not a classical group in characteristic s^ p. 

There are six families of these: An,Bn,Cn,Dn^^An,^Dn, whose orders are 
as follows. Here ^ is a power of ̂ . 

Group Order Restrictions on n 

An ^"("+ ̂  )/2 n t i (^'^ ^ - 1) None 

/gcd(«-f 1,^-1) 

/ g c d ( 2 , ^ - l ) 

/ g c d ( 2 , ^ - l ) 

/ g c d ( 4 , ^ " - l ) 

'^An ^"("+^)/2nLi(^'"^' - (-i)'^M '̂  > 1 

/gcd(«+1,^+1) 

/gcd(4,^« + l) 
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All the groups in this table are simple, except for y4i(2),52(2),^^2(3) 
and ^^2(2). But we can safely ignore these since all their orders have 
largest prime factor less than 7. 

Our first test is basically the same as our first test for the exceptional 
Chevalley groups. This time the degrees of the faithful linear represen
tations, and the resulting bounds on p, are as follows: 

Group Degree {d) Bound {2d-\-1) 
An 
Bn 

c„ 
Dn 
^An 

'D„ 

n-\-l 
2n + l 

In 
2n 

n-\-\ 
In 

2/2 + 3 
4« + 3 
4 « + l 
4 « + l 
2« + 3 
4 « + l 

The main difference is that we need some mechanism for bounding n. 
But we simply note that each group R has order at least 2"("+^)/^ and that 
each prime p is at most 4/̂  + 3; therefore, we obtain the crude inequality 

2«(«+i)/2 ^ j^^4 ^ i6[(4« + 3)V24]4, 

which implies that n<9. 

Carrying out the test eliminates all possibilities. 
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